

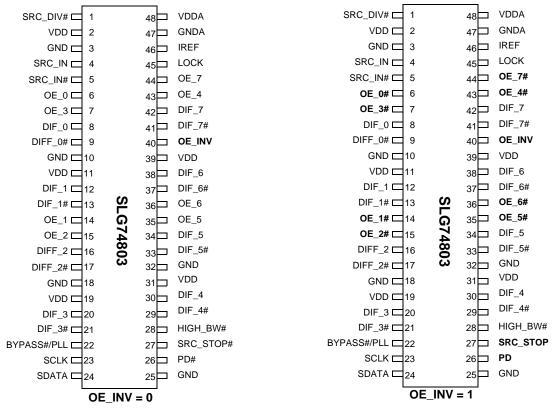
DB800 PCI Express Clock Buffer

The SLG74803 is a member of Silego's PCI Express Clock Buffer Family.

Recommended Application:

PCI Express Gen1, Gen2, and Gen3 Reference Clock Buffer

Output Features:


- 8 0.7V current-mode differential output pairs
- · Supports zero delay buffer mode and fanout mode
- Bandwidth programming available

Key Specifications:

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- Phase jitter: PCIe Gen1 < 86ps peak to peak
- Phase jitter: PCIe Gen2 < 3.1ps rms
- Phase jitter: PCIe Gen3 < 1.0ps rms

Features/Benefits:

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.

Pin Configuration

48-pin SSOP & TSSOP

Other brands and names may be claimed as the property of others

Pin Description for OE_INV = 0

Pin #	Name	Туре	Description
1	SRC_DIV#	IN	Active low Input for determining SRC output frequency SRC or SRC/2 0 = SRC/2, 1 = SRC
2	VDD	PWR	Power supply, nominal 3.3V
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7V Differential SRC TRUE input
5	SRC_IN#	IN	0.7V Differential SRC COMPLEMENTARY input
6	OE_0	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1 = enable outputs
7	OE_3	IN	Active high input for enabling outputs 0 = tri-state outputs, 1 = enable outputs
8	DIF_0	OUT	0.7V differential true clock outputs
9	DIF_0#	OUT	0.7V differential complement clock outputs
10	GND	PWR	Ground pin
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock outputs
13	DIF_1#	OUT	0.7V differential complement clock outputs
14	OE_1	IN	Active high input for enabling outputs. 0=tri-state outputs, 1=enable outputs
15	OE_2	IN	Active high input for enabling outputs. 0=tri-state outputs, 1=enable outputs
16	DIF_2	OUT	0.7V differential true clock outputs
17	DIF_2#	OUT	0.7V differential complement clock outputs
18	GND	PWR	Ground pin
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock outputs
21	DIF_3#	OUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1 = PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry 5V tolerant
24	SDATA	I/O	Data pin for SMBus circuitry 5V tolerant
25	GND	PWR	Ground pin
26	PD#	IN	Asynchronous active low input pin, with 120Kohm internal pull-up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped
27	SRC_STOP	IN	Active low input to stop SRC outputs
28	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential complement clock outputs
30	DIF_4	OUT	0.7V differential true clock outputs
31	VDD	PWR	Power supply, nominal 3.3V

Pin Description for OE_INV = 0 (continued)

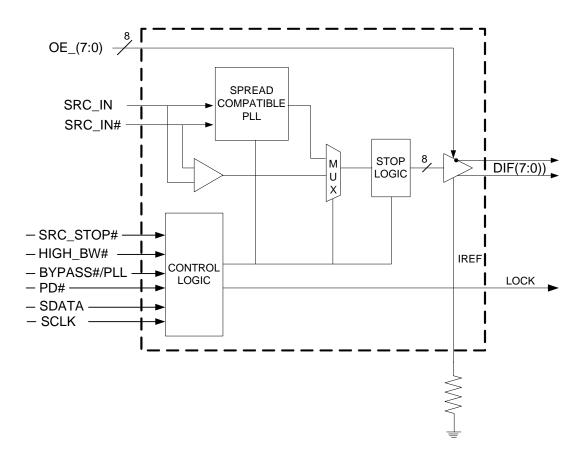
Pin #	Name	Туре	Description
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential complement clock outputs
34	DIF_5	OUT	0.7V differential clock outputs
35	OE_5	IN	Active high inputs for enabling outputs 0 = tri-state outputs, 1 = enable outputs
36	OE_6	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1 = enable outputs
37	DIF_6#	OUT	0.7V differential complement clock outputs
38	DIF_6	OUT	0.7V differential true clock outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input slectes the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential complement clock outputs
42	DIF_7	OUT	0.7V differential true clock outputs
43	OE_4	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1 = enable outputs
44	OE_7	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1 = enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

Pin Description for OE_INV = 1

Pin #	Name	Туре	Description
1	SRC_DIV#	IN	Active low Input for determining SRC output frequency SRC or SRC/2 0 = SRC/2, 1 = SRC
2	VDD	PWR	Power supply, nominal 3.3V
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7V Differential SRC TRUE input
5	SRC_IN#	IN	0.7V Differential SRC COMPLEMENTARY input
6	OE_0#	IN	Active low input for enabling DIF pair 0 1 = tri-state outputs, 0 = enable outputs
7	OE_3#	IN	Active low input for enabling DIF pair 3 1 = tri-state outputs, 0 = enable outputs
8	DIF_0	OUT	0.7V differential true clock outputs
9	DIF_0#	OUT	0.7V differential complement clock outputs
10	GND	PWR	Ground pin
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock outputs
13	DIF_1#	OUT	0.7V differential complement clock outputs
14	OE_1#	IN	Active low input for enabling DIF pair 1. 1=tri-state outputs, 0=enable outputs
15	OE_2#	IN	Active low input for enabling DIF pair 2. 1=tri-state outputs, 0=enable outputs
16	DIF_2	OUT	0.7V differential true clock outputs
17	DIF_2#	OUT	0.7V differential complement clock outputs
18	GND	PWR	Ground pin
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock outputs
21	DIF_3#	OUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1 = PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry 5V tolerant
24	SDATA	I/O	Data pin for SMBus circuitry 5V tolerant
25	GND	PWR	Ground pin
26	PD	IN	Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.
27	SRC_STOP	IN	Active high input to stop SRC outputs
28	HIGH_BW#	IN	3.3V input for selecting PLL Bandwidth 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential complement clock outputs
30	DIF_4	OUT	0.7V differential true clock outputs
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential complement clock outputs
34	DIF_5	OUT	0.7V differential clock outputs
35	OE_5#	IN	Active low input for enabling DIF pair 5. 1 = tri-state outputs, 0 = enable outputs

SLG74803

Pin #	Name	Туре	Description
36	OE_6#	IN	Active low input for enabling DIF pair 6. 1= tri-state outputs, 0= enable outputs
37	DIF_6#	OUT	0.7V differential complement clock outputs
38	DIF_6	OUT	0.7V differential true clock outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input slectes the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential complement clock outputs
42	DIF_7	OUT	0.7V differential true clock outputs
43	OE_4#	IN	Active low input for enabling DIF pair 4. 1= tri-state outputs, 0 = enable outputs
44	OE_7#	IN	Active low input for enabling DIF pair 7. 1= tri-state outputs, 0 = enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.


continued

General Description

The SLG74803 follows the Intel DB800 Differential Buffer Specification v2.0. This buffer provides eight PCI-Express SRC clocks. The SLG74803 is driven by a differential input pair from a CK409/CK410 main clock generator. It provides outputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

Block Diagram

Note: Polarities shown for OE_INV = 0.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V _{IL}	Input Low Voltage	GND-0.5		V
V _{IH}	Input High Voltage		V _{DD} +0.5V	V
Τ _S	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tambient	Ambient Operating Temp (ordering option K)	0	85	°C
Tcase	Case Temperature		115	°C
ESD protection	Input ESD protection human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters $T_A = 0$ to (70°C or 85°C); Supply Voltage $V_{DD} = 3.3V + -5\%$

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Input High Voltage	V _{IH}	3.3 V +/-5%	2		V _{DD} + 0.3	V	
Input Low Voltage	V _{IL}	3.3V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$ -5 5		uA			
Input Low Current	I _{IL1}	V _{IN} = 0V; Inputs with no pull-up resistors	-5			uA	
	I _{IL2}	V _{IN} = 0V; Inputs with pull-up resistors	-200			uA	
Operating Supply Cur- rent	I _{DD3} ,30P	Full Active, CL = Full load;200		mA			
Powerdown Current		All differential pairs driven			70	mA	
	I _{DD3,3PD}	All differential pairs tri-stated			4	mA	
Input Frequency ³	Fi	V _{DD} = 3.3V	50		110	MHz	3
input i requency	F _{iBYPASS}	Bypass Mode	50		400	MHz	1
Pin Inductance ¹	L _{pin}				7	nH	1
Input Capacitance ¹	C _{IN}	Logic Inputs	1.5		5	pF	1
input Capacitance	C _{OUT}	Output pin capacitance	but pin capacitance 6	pF	1		
PLL Bandwidth	BW	PLL Bandwidth when PLL_BW#=0	2	3		MHz	1
FLL Bandwidth	DVV	PLL Bandwidth when PLL_BW#=1	0.7	1	1.4	MHz	1
CLK Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock			1	ms	1,2
Modulation Frequency		Triangular Modulation	odulation 30 33 kHz		1		
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion			15	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3

SLG74803

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#			5	ns	2

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_A = 0$ to (70°C or 85°C); $V_{DD} = 3.3V + -5\%$, $C_L = 2pF$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Notes
Current Source Output Impedance	Z _O ¹	V _O = V _X	3000			Ω	1
Voltage High	VHigh	Statistical measurement on sin-	660		850		1,3
Voltage Low	VLow	gle ended signal using oscillo- scope math function.	-150		150	mV	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value	-300				1
Crossing Voltage (abs)	Vcross(abs)		250		550	mB	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	V _{OL} = 0.175V, VOH = 0.525V	175		700	ps	1
Fall Time	t _f	V _{OH} = 0.525V VOL = 0.175V	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential waveform	45	50	55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
littor Cycle to Cycle	+	PLL Mode		40	50	ps	1,5
Jitter, Cycle to Cycle	$ \begin{array}{c c c c c c c } \hline \text{ion} & d-t_r & & & & & 125 & \text{ps} \\ \hline \text{on} & d-t_f & & & & 125 & \text{ps} \\ \hline & d_{t3} & & & & & & 125 & \text{ps} \\ \hline & d_{t3} & & & & & & & & & 125 & \text{ps} \\ \hline & d_{t3} & & & & & & & & & & & & & & & & & & &$	ps	1,4,5				
	t			30	86	ps	1,4
	ⁱ jphasebypass	PCIe Gen 2 specs (rms value)		2.6	3.1	ps	1,4
Jitter, Phase		PCle Gen 1 specs (pk to pk value)		40	86	ps	1,6
	t _{jphase} PLL	PCle Gen 2 specs (rms value)		2.8	3.1	ps	1,6
		PCIe Gen 3 specs (rms value)		0.7	1.0	ps	1,6,7

¹ Guaranteed by design and characterization, not 100% tested in production.

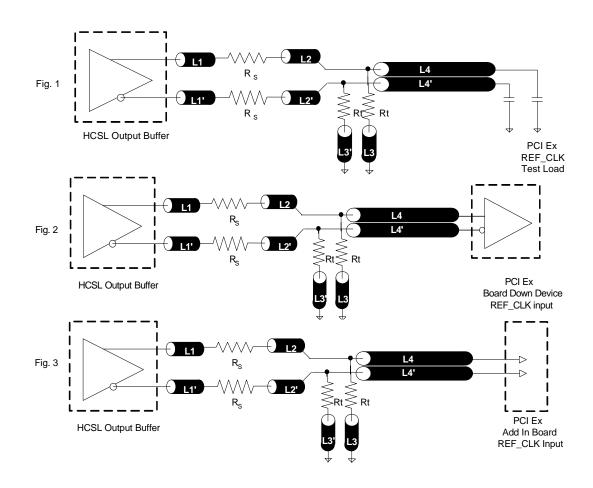
² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410/CK505 accuracy requirements.

³ $I_{REF} = V_{DD}/(3xR_R)$. For $R_R = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7V @ Z_O = 50\Omega$ ⁴ Applies to Bypass Mode Only

⁵ Measured from differential waveform

⁶ Device driven by HP81134A generator

⁷ PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Please check the PCI* SIG for the latest specification.


L4 length, Route as coupled stripline 100 ohm

3

SRC R	eference	Clock			
Common Recommendations for Differential Rou	Dimension or Value		Unit	Figure	
L1 length, Route as non-coupled 50 ohm trac	e	0.5 max		inch	2, 3
L2 length, Route as non-coupled 50 ohm trac	e	0.2 max		inch	2, 3
L3 length, Route as non-coupled 50 ohm trac	e	0.2 max		inch	2, 3
R _S		33	ohm		2, 3
R _t		49.9	ohm		2, 3
Down Device Differential Routing		Dimension or Value Unit		Unit	Figure
L4 length, Route as coupled microstrip 100 ohm differ trace	rential	2 min to 16 ma	2 min to 16 max inch		2
L4 length, Route as coupled stripline 100 ohm different	ial trace	1.8 min to 14.4 max inch		2	
Differential Routing to PCI Express Connector	Dime	ension or Value		Unit	Figure
L4 length, Route as coupled microstrip 100 ohm	-	25 to 14 max		inch	3

0.225 min to 12.6 max

inch

General SMBus serial interface information for the SLG74803

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address DC (H)
- Silego clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- Silego clock will acknowledge
- Controller (host) sends the data byte count = X
- Silego clock will *acknowledge*
- Controller (host) starts sending Byte N through
- Byte N + X -1

(see Note 2)

- Silego clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC (H)
- Silego clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- Silego clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (H)
- Silego clock will acknowledge
- Silego clock will send the data byte count = X
- Silego clock sends Byte N + X -1
- Silego clock sends Byte 0 through byte X (if $X_{(H)}$ was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Inde	Index Block Write Operation						
Controller (I	lost)		Silego(Slave/Receiv- er)				
Т	Start E	Bit					
Slave Addres	ss DC (H)						
WR	Write	;					
	•		Ack				
Beginning E	Byte = N						
			Ack				
Data Byte C	ount = X						
			Ack				
Beginning B	yte N						
			Ack				
0		e					
0		X Byte	0				
0		\times	0				
	Byte N + X - 1		0				
Byte N + X							
			Ack				
Р	Stop E	Bit					

	Index Block R	ead C	Operation				
Controlle	er (Host)	Sil	ego (Slave/Receiver)				
Т	Start Bit						
Slave Addr	ess DC (H)						
WR	Write						
			Ack				
Beginning	Byte = N						
			Ack				
RT	Repeat Start						
Slave Addr	ess DD _(H)		Ack				
RD	Read						
			Ack				
			Data Byte Count = X				
Ac	:k						
			Beginning Byte N				
Ac	:k						
		e	0				
C)	X Byte	0				
C)	×	0				
C)]					
			Byte N + X - 1				
N	Not Ack						
Р	Stop Bit						

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Byte 0	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6	-	STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5	-	PD_Polarity	Х	RW	low	high	0
Bit 4	-	Reserved	Reserved	RW	Reserved		Х
Bit 3	-	Reserved	Reserved	RW	Rese	Reserved	
Bit 2	-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1	-	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0	-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table:Output Control Register

Byte 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	42,41	DIF_7	Output Control	RW	Disable	Enable	1
Bit 6	38,37	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	34,33	DIF_5	Output Control	RW	Disable	Enable	1
Bit 4	30,29	DIF_4	Output Control	RW	Disable	Enable	1
Bit 3	20,21	DIF_3	Output Control	RW	Disable	Enable	1
Bit 2	16,17	DIF_2	Output Control	RW	Disable	Enable	1
Bit 1	12,13	DIF_1	Output Control	RW	Disable	Enable	1
Bit 0	8,9	DIF_0	Output Control	RW	Disable	Enable	1

SMBus Table:Output Control Register

Byte 2		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	42	2,41	DIF_7	Output Control	RW	Free-run	Stoppable	0
Bit 6	38	8,37	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	34	4,33	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	30	0,29	DIF_4	Output Control	RW	Free-run	Stoppable	0
Bit 3	20	0,21	DIF_3	Output Control	RW	Free-run	Stoppable	0
Bit 2	10	6,17	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	12	2,13	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	ł	3,9	DIF_0	Output Control	RW	Free-run	Stoppable	0

SMBBus Table: Output Control Register

Byte 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		Reserved		RW	Reserved		Х
Bit 6			RW	Reserved		Х	
Bit 5		Reserved		RW	Reserved		Х
Bit 4		Reserved		RW	Reserved		Х
Bit 3		Reserved		RW	Reserved		Х
Bit 2		Reserved		RW	Rese	erved	Х
Bit 1		Reserved		RW	Reserved		Х
Bit 0		Reserved		RW	N Reserved		Х

SMBBus Table: Vendor & Revision ID Register

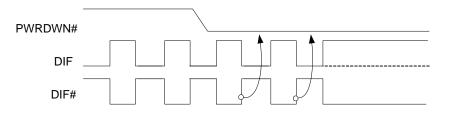
Byte 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3		R	-	-	0
Bit 6	-	RID2	REVISION ID	R	-	-	0
Bit 5	-	RID1	REVISION ID	R	-	-	0
Bit 4	-	RID0		R	-	-	0
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	1
Bit 1	-	VID1	VENDORID	R	-	-	1
Bit 0	-	VID0		R	-	-	0

SMBus Table: DEVICE ID

Byte 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	Device ID 7 (MSB)		RW	Reserved		1
Bit 6	-		RW	Reserved		0	
Bit 5	-		RW	Reserved		0	
Bit 4	-	Device ID 4		RW	Reserved		0
Bit 3	-	Device ID 3		RW	Reserved		0
Bit 2	-	Device ID 2		RW	Reserved		0
Bit 1	-	Device ID 1		RW	Reserved		1
Bit 0	-		RW	Rese	erved	1	

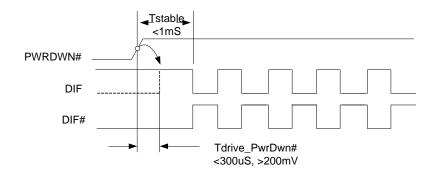
SMBus Table: Byte Count Register

Byte 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5		RW	-	-	0
Bit 4	-	BC4	Writing to this register con-	RW	-	-	0
Bit 3	-	BC3	 figures how many bytes will be read back. 	RW	-	-	0
Bit 2	-	BC2		RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1


Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

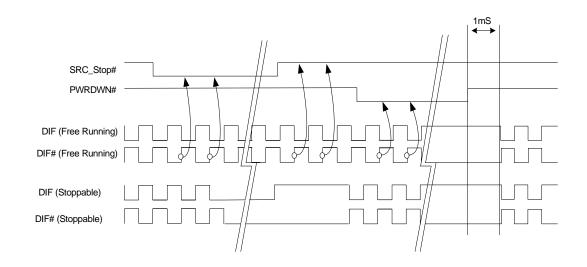
PD# De-assertion

Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.

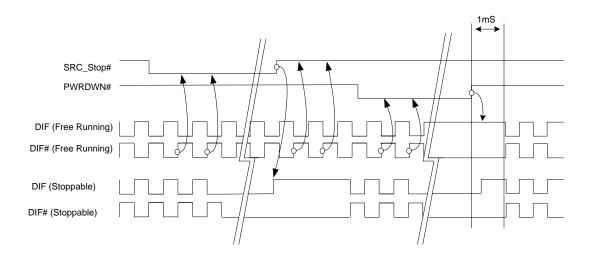
SRC_STOP#

The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

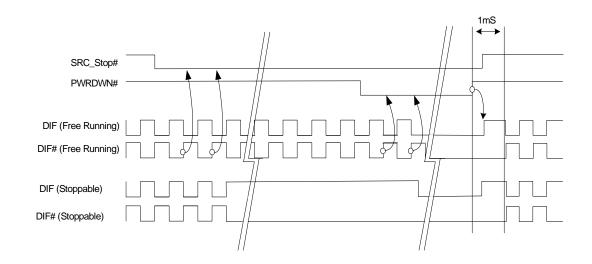
SRC_STOP# - Assertion


Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with $6xI_{REF}$. DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

SRC_STOP# - De-assertion (transition from '0' to '1')


All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

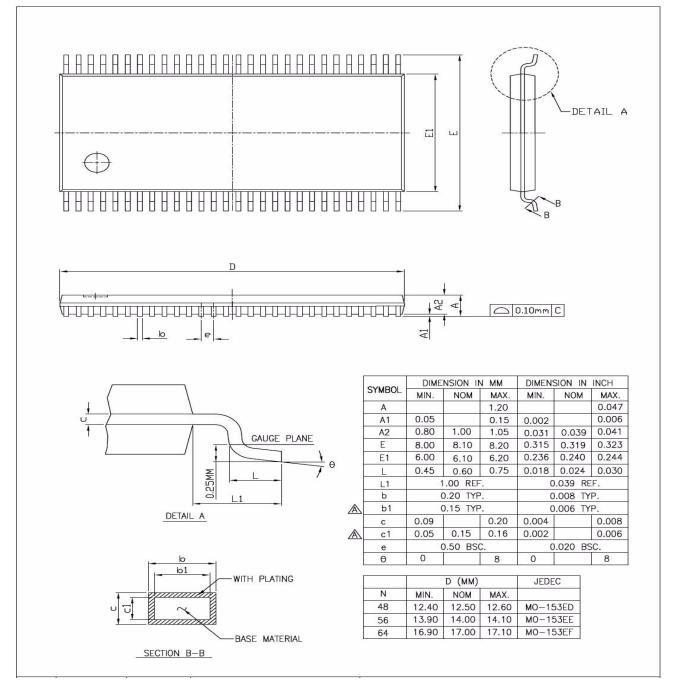
SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)



SRC_STOP_2 (SRC_Stop = Tristate, PD = Driven)

SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)


Silego Ordering Information

Part Number	Package Type	Temperature Range
SLG74803T	48 Lead Green Package TSSOP	Commerical, 0°C to 70°C
SLG74803TTR	48 Lead Green Package TSSOP - Tape and Reel	Commerical, 0°C to 70°C
SLG74803KT	48 Lead Green Package TSSOP	Industrial, 0°C to 85°C
SLG74803KTTR	48 Lead Green Package TSSOP - Tape and Reel	Industrial 0°C to 85°C

Package Drawings and Dimensions

48L TSSOP (6.10 mm body, 0.50 mm pitch) see other dimensions in the table below. (56-pin drawing is shown for reference)

Silego Technology Inc. reserves the right at any time to change specifications and circuitry without notice. Silego Technology Inc. does not assume responsibility for use of circuitry described. Circuit patent licenses are not implied. Silego Technology Inc. products are not authorized for use as critical components in life support devices or systems without obtaining express written approval from the president of Silego Technology Inc. A component is a critical component if failure to perform affects safety, effectiveness, or causes failure of the life support system. These systems are intended for surgical implant into the body, or support or sustain life, or whose failure to perform when properly used can be reasonably expected to result in injury to the user.