

SLG55031

GreenFETTM Low Voltage Gate Driver

Features

- Drain Voltage Range 0.7V to 1.5V
- Controlled Load Discharge Rate
- Controlled Turn on Slew Rate
- Pb-Free / RoHS compliant
- Halogen-Free
- 2mm x 2mm TDFN-8 Package

Block Diagram

Applications

- Low Transient Load Switching
- Personal computers and Servers
- Hot Plugging Applications
- Power Rail Switches

Overview

The SLG55031 N-Channel FET Gate Driver is used for controlling the ramping slew rate of the source voltage on N-Channel FET switches from a CMOS logic level input. Intended as supporting control elements for switched voltage rails in energy efficient advanced power management systems, these devices also include circuits to discharge opened switched voltage rails. SLG55031 uses an external resistor connected between the CNFG pin and GND to establish the slew rate. F

SLG55031 ramps V_S from 10% to 90% of 1.50V in 33 μs with External Resistor = 560 k Ω

Pin Description

Pin Name	Pin Number	Туре	Pin Description
VCC	1	Power	Supply Voltage 5V
ENABLE	2	Input	CMOS Logic Level. High True for SLG55031
CNFG	3	Input	Resistor or Capacitor Connection for timing configuration
GND	4	GND	Ground.
DRAIN	5	Input	FET Drain Connection
SOURCE	6	Input	Source Connection
GATE	7	Output	FET Gate Drive
DONE	8	Output	Output CMOS Open Drain - Power Good, indicates external FET fully on.

Ordering Information

Part Number	External Timing Component	Enable Polarity	External FET Threshold Voltage Range	Package Type
SLG55031VTR	External Resistor	HIGH True Active	1.5V < VT < 2.5V	TDFN-8 - Tape and Reel (3k units)

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{CC} to GND	-0.3	6.0	V
Voltage at Logic Input pins	-0.3	6.0	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	°C
Operating temperature range	0	70	°C
Junction temperature		150	°C
Moisture Sensitivity Level		1	

Electrical Characteristics (-10°C to 75°C)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		4.75	5.0	5.25	V
۱ _q	Quiescent Current	ENABLE = 1, V_G not ramping		1.5	5	μA
I _{STBY}	Standby Current	ENABLE = 0		2	3	μA
Т	Operating Temperature		0	25	70	°C
VD	Driven FET Drain Voltage	May dynamically vary	0.7		1.5	V
V _G	Gate Voltage	Tracks Supply V _{CC}	4.75	5.0	5.25	V
T _{VT}	FET Turn on Delay	FET VT <2.0V FET GATE CIN < 4nF	3	8		μs
IDISCHARGE	Internal Discharge Equiva- lent Current	Discharges MOSFET Source			10	mA
V _{IH}	HIGH-level input voltage	ENABLE pin	2.0			V
V _{IL}	LOW-level Input voltage	ENABLE pin			1.0	V
I _{IH}	HIGH-level Input Current	Digital pins, V _{IN} = V _{CC}	-1.0		1.0	μA
I _{IL}	LOW-level input Current	Digital pins, V _{IN} = 0V	-1.0		1.0	μA
V _{OH_LOGIC}	DONE Pull-up Voltage	Open Drain Output Buffer			5.5	V

Description

In a typical application, de-asserting ENABLE turns off the external power N-FET. The voltage at the load is discharged through the discharge control path internal to the SLG55031. The rate of discharge is current limited to 10ma.

When ENABLE is asserted, gate voltage is applied to the gate of the external power N-FET within 10 μ s (typical) then the gate voltage is ramped up to V_{CC} - V_D (3.5V typical) at a slew rate determined by the value of the external resistor or capacitor connected to the CNFG pin of the SLG55031. Monotonic rise of the external FET's source voltage V_S is maintained even as Source current increases after the load device turn on threshold voltage is reached. After the Source voltage has ramped up to the Drain Voltage – the voltage drop contribution by R_{DS-ON} of the FET, the external FET is fully on and the open drain DONE signal is asserted.

If a voltage is not present on the Drain Sense Pin prior to assertion of ENABLE, the FET's gate will be immediately driven high turning the FET fully on.

DONE may be used as the ENABLE control of a second SLG55031 connected in series thereby providing power on sequence control of a number of switched power rails, or used in a 'wired and' with other DONE signals to indicate all switched power rails are in a power good condition.

Configuration Options

The SLG55031 is configured with external passive devices to select between two widely separate ramp slew rates. See the following Table for details

Configuration Pin Usage Table

Resistor to Ground (SLG55031) to 1.5V Rail						
Value (Ω)	400K	560K	750K			
Typical Slew Time (μs)	23	33	45			

Timing Diagram - Initial P-ON

 V_{CC} to the SLG55031 must reach V_{CC} min (4.75V) before the device will begin to be operational. ENABLE¹ must be asserted 100µs after 100% of V_{CC} has been attained. If V_DRAIN is present at a minimum of 3µs prior to assertion of the ENABLE, the Source will begin to ramp towards V_DRAIN after T_VT (10µs typically), the time required for the gate of the FET to be past turn on threshold (typically 2.0V). Carefully examine specific FET turn-on threshold as well as FET C-IN and if the values fall outside of the range of values covered in the electrical specifications section of this document, consult Silego for applications assistance in determining the value of T_VT.

If V_DRAIN is not present prior to the assertion ENABLE, the driven FET will be turned on immediately following assertion of ENABLE and subsequent application of a voltage on the Drain of the FET will be directly applied to the Source (Diagram 2). Again, V_{CC} must have reached V_{CC-MIN} before ENABLE will operate the device. V_Gate will be pulled to V_{CC} after which the V_Source will track the voltage applied to the Drain of the FET.

Diagram 2

1 T_V_{CC} to ENABLE = 100 μ s assertion delay (when V_{CC} initially ramping up to 100% of V_{CC}).

2 Enable assertion transition time must be less than 1μ s.

* If V_Drain = 0V prior to assertion of ENABLE, DONE becomes true co-incident with assertion of ENABLE.

* In the case of V_DRAIN after ENABLE, the definition of Arrival and Ramp Time are not valid

Timing Diagram - Rail Switching

The two components of the FET turn-on time consist of the time it takes to drive the FET's gate up to turn-on threshold (T_VT) added to the time it takes for the FET's source voltage to ramp (T_Slew) up fully on into the driven load. The timing diagram and table below show the min/max values for these two components vs. different rail source voltage. The T_VT delay is 8μ s - 10μ s typically (with FET VT = 2.0V) depending on the threshold voltage of the FET being driven (Diagram 3).

Diagram 3

The Table below and Diagram 3 illustrate source voltage ramp times for various slew rates and resulting total turn on time (ENABLE to DONE) when using the SLG55031 for several selected ranges of drain voltages..

	Min ٦ (μSec) (μ ^ι		/p iec)	Max (μSec)			
SLG55031							
P oxt - 560KO	V_Drain Voltage (FET VT = 1.5V to 2.5V)						
R_ext = 500R22		1.35V	1.50V				
T_Slew*	20	30	33				
T_DONE**		42	46	65			
Recommended FET: ON Semi NTMFS4834N							

(See Diagram 4 below for more details)

* T_Slew: As V_Source increases from 10% to 90% of V_Drainl; e.g. ramp time

** T_Done: From assertion of Enable to V_Source = 90% of V_Drain; e.g. arrival time

Timing Definition of Arrival Time and Ramp Time

Diagram 4

1 The definition of Arrival Time and Ramp Time is only valid for ENABLE (asserted with a 100 μ s delay) after V_{CC} has reached 100% and V_DRAIN is present prior to assertion of ENABLE

Package Top Marking System Definition

A – Assembly Code Field: Assembly Location of the device. DD – Date Code Field: Coded date of manufacture

L – Lot Code: Designates Lot #

R – Revision Code: Device Revision

Package Drawing and Dimensions 8 Lead TDFN Package

DETAIL A

	0	IMENSIO	V	DIMENSION			
SYMBOL		(MM)			(MIL)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	28	30	31	
A1	0.00	0.02	0.05	0	1	2	
A2	0	0.55	0.80	0	22	31	
A3	-	0.20	-	-	8	-	
b	0.18	0.25	0.30	7	10	12	
D	1.90	2.00	2.10	74	79	83	
D1		-		-			
D2	0.75	0.90	1.05	30	35	41	
E	1.90	2.00	2.10	75	79	83	
E1		-			-		
E2	1.35	1.50	1.65	53	59	65	
е	0.50 BSC			20 BSC			
L	0.25	0.30	0.35	10	12	14	

NOTE

REFER TO JEDEC STD: MO-229.
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15MM AND 0.30MM FROM THE TERMINAL TIP. IF THE TERMINAL HAS OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

Note: Bottom side metal plate is at ground potential

Tape and Reel Specifications

Package Type	#	Nominal	Max	Units	Reel &	Leade	r (min)	Traile	r (min)	Таре	Part
	# or Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width Pit [mm] [m	Pitch [mm]
TDFN 8L Green	8	2 x 2 x 0.75	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	w
TDFN 8L Green	2.3	2.3	1.05	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 3.00 mm³ (nominal). More information can be found at www.jedec.org.

Silego Website & Support

Silego Technology Website

Silego Technology provides online support via our website at <u>http://www.silego.com/</u>. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/ http://greensak.silego.com/ http://greenlib.silego.com/ http://greenfet.silego.com/ http://greenclk.silego.com/ http://greenddr3.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://store.silego.com/.

Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at info@silego.com.

For specific GreenPAK design or applications questions and support please send email requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

Online Live Support

Silego Technology has live video technical assistance and sales support available at <u>http://www.silego.com/</u>. Please ask our live web receptionist to schedule a 1 on 1 training session with one of our application engineers.

Contact Your Local Sales Representative

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

Contact Silego Directly

Silego can be contacted directly via e-mail at info@silego.com or user submission form, located at the following URL:

http://support.silego.com/

Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of world wide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLI-CATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.