

GreenPAK 2[™]

Reset IC with Latch and MUX

General Description

Silego GreenPAK 2 SLG7NT4445 is a low power and small form device. The SoC is housed in a 2.5mm x 2.5mm TDFN package which is optimal for using with small devices.

Features

- Low Power Consumption
- Dynamic Voltage Supply Range
- RoHS Compliant / Halogen-Free
- Pb-Free TDFN-12 Package
- MSL1

Pin Configuration

Output Summary

- 1 Output Push Pull 1X
- 4 Outputs Open Drain NMOS 1X

Block Diagram

Pin Configuration

Pin #	Pin Name	Туре	Pin Description
1	VDD	PWR	Supply Voltage
2	PWR_BTN_L	Digital Input	Digital Input with Schmitt trigger
3	BATT_ENABLE	Digital Output	Open Drain NMOS 1X
4	AC_PRESENT	Digital Input	Low Voltage Digital Input
5	KSO_SW	Digital Output	Open Drain NMOS 1X
6	KSI_SW	Digital Input	Digital Input with Schmitt trigger
7	GND	GND	Ground
8	KSI	Digital Output	Open Drain NMOS 1X
9	KSO_INV	Digital Input	Digital Input with Schmitt trigger
10	EC_ENTERING_RW	Digital Input	Digital Input with Schmitt trigger
11	EC_IN_RW	Digital Output	Open Drain NMOS 1X
12	EC_RST_L	Bi-directional	Digital Input withSchmitt trigger / Push Pull 1X
Exposed Bottom Pad	Exposed Bottom Pad	GND	Ground

Ordering Information

Part Number	Package Type
SLG7NT4445V	V = TDFN-12
SLG7NT4445VTR	VTR = TDFN-12 - Tape and Reel (3k units)

Reset IC with Latch and MUX

Absolute Maximum Conditions

Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	150	°C
Junction temperature		150	°C

Electrical Characteristics

(@ 25°C, unless otherwise stated)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit		
V _{DD}	Supply Voltage		1.71		5.5	V		
T _A	Operating Temperature		-40	25	85	°C		
Ι _Q	Quiescent Current	Static inputs and outputs		1		μA		
I _A	Active Current	Static inputs and outputs		15		μA		
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V		
Ι _Ο	Maximal Average or DC Current (note 1)	Per Each Chip Side			24	mA		
		Logic Input with Schmitt Trigger, at VDD=1.8V	1.35		VDD			
V _{IH}	HIGH-Level Low Voltage Input Voltage	Low-Level Logic Input, at VDD=1.8V	1.1		VDD			
		Logic Input with Schmitt Trigger, at VDD=3.3V	2.3		VDD	V		
		Low-Level Logic Input, at VDD=3.3V	1.5		VDD	-		
		Logic Input with Schmitt Trigger, at VDD=5.0V	3.2		VDD			
		Low-Level Logic Input, at VDD=5.0V	1.7		VDD			
		Logic Input with Schmitt Trigger, at VDD=1.8V			0.45			
		Low-Level Logic Input, at VDD=1.8V			0.50			
V _{IL}	LOW-Level Low Voltage Input Voltage	Logic Input with Schmitt Trigger, at VDD=3.3V			0.92	V		
		Low-Level Logic Input, at VDD=3.3V			0.66	5		
		Logic Input with Schmitt Trigger, at VDD=5.0V			1.3			

Reset IC with Latch and MUX

		Low-Level Logic Input, at VDD=5.0V			0.77	
I _{IH}	HIGH-Level Input Current	Logic Input Pins;V _{IN} = VDD	-1.0		1.0	μA
IIL	LOW-Level Input Current	Logic Input Pins; V _{IN} = 0V	-1.0	-	1.0	μA
		Push Pull, I _{OH} = 100uA, 1X Driver, at VDD=1.8 V	1.66			
		Push Pull, I _{OH} = 700uA, 1X Driver, at VDD=1.8 V	1.21			
V _{OH}	HIGH-Level Output Voltage (note 1)	Push Pull, I _{OH} = 3mA, 1X Driver, at VDD=3.3 V	2.1			V
		Push Pull, I _{OH} = 5mA, 1X Driver, at VDD=5.0 V	3.6			
		Push Pull, I _{OH} = 8mA, 1X Driver, at VDD=5.0 V	2.9			
		Push Pull, I_{OL} = 100uA, 1X Driver, at VDD=1.8 V			0.040	
	LOW-Level Output Voltage (note 1)	Push Pull, I_{OL} = 700uA, 1X Driver, at VDD=1.8 V			0.415	
		Open Drain, I _{OL} = 5mA, 1X Driver, at VDD=1.8 V			0.340	
		Push Pull, I _{OL} = 3mA, 1X Driver, at VDD=3.3 V			0.81	
V _{OL}		Open Drain, I _{o∟} = 20mA, 1X Driver, at VDD=3.3 V			0.605	V
		Push Pull, I _{OL} = 5mA, 1X Driver, at VDD=5.0 V			0.85	
		Push Pull, I_{OL} = 8mA, 1X Driver, at VDD=5.0 V			1.2	
		Open Drain, I _{OL} = 20mA, 1X Driver, at VDD=5.0 V			0.36	
		Push Pull, V _{oL} =0.15V, 1X Driver, at VDD=1.8 V	0.34			
		Open Drain, V _{OL} =0.15V, 1X Driver, at VDD=1.8 V	2.72			
I _{OL}	LOW-Level Output Current (note 1)	Push Pull, V _{OL} =0.4V, 1X Driver, at VDD=3.3 V	1.836			mA
		Open Drain, V _{OL} =0.4V, 1X Driver, at VDD=3.3 V	14.688			
		Push Pull, V _{OL} =0.4V, 1X Driver, at VDD=5.0 V	2.745			

Reset IC with Latch and MUX

		Open Drain, V _{OL} =0.4V, 1X Driver, at VDD=5.0 V	21.96			
$R_{PULL_{UP}}$	Internal Pull Up Resistance	Pull up on PINs 6, 12	35	50	65	kΩ
R	Internal Pull Down Resistance	Pull down on PIN10		50	65	kO
RPULL_DOWN		Pull down on PIN9	210	300	390	1132
T _{DLY0}	Delay0 Time	At temperature 25°C	4.13	5	5.88	ms
T _{DLY1}	Delay1 Time	At temperature 25°C	8.27	10	11.7	ms
T _{DLY2}	Delay2 Time	At temperature 25°C	5		7.042	S
T _{DLY3}	Delay3 Time	At temperature 25°C	60		127	μs
T _{SU}	Start up Time	After VDD reaches 1.6V level		7		ms

1. Guaranteed by Design.

Description

This device is a reset IC with one shot function, internal Latching system, level shifter and multiplexor. The reset (active LOW) occurs when both PWR_BTN_L (PIN2) and KSI_SW (PIN6) are LOW. PWR_BTN_L (PIN2) has 5ms deglitch delay on its line. Also reset logics contains one more 100µs deglitch delay is used. The signal from this delay goes to 10ms one-shot system that creates 10ms LOW pulse on reset event. If PWR_BTN_L and KSI_SW are LOW, and AC_PRESENT (PIN4) transitions from HUGH to LOW, these three conditions will latch the BATT_ENABLE (PIN3) LOW for 5 seconds minimum. During this EC_RST_L will be asserted and EC_IN_RW will go LOW as well.

EC_RST_L is configured to be bidirectional, so it will operate as digital input with Schmitt trigger or as Low Level Digital Output.

Also SLG7NT4445 includes latching system. Its inputs are EC_RST_L and EC_ENTERING_RW. EC_IN_RW is an output configured as open drain. This system is initialized with logic HIGH on its output. It is latched LOW when EC_RST_L goes LOW until EC_ENTERING_RW goes HIGH.

Multiplexing system in this device follow the logic: KSO_SW = PWR_BTN_L && !KSO_INV KSI = !(PWR_BTN_L) | KSI_SW

If the AC_PRESENT / BATTERY_ENABLE functionality is not needed, BATTERY_ENABLE can be left floating but AC_PRESENT should be tied low.

All pins are in a high impedance state until the chip has powered up.

Reset IC with Latch and MUX

Timing Diagram

Package Top Marking

- COO: Specifies Country of Origin

- Revision Code: Device Revision RR

Datasheet Revision	Programming Code Number	Locked Status	Part Code	Revision	Date
1.02	002	L	4445V	AB	06/30/2015

The IC security bit is locked/set for code security for production unless otherwise specified. Revision number is not changed for bit locking.

Package Drawing and Dimensions

Index Area (D/2 x E/2)

Unit: mm								
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max	
A	0.70	0.75	0.80	D1	1.95	2.00	2.05	
A1	0.005	-	0.060	E1	1.25	1.30	1.35	
A2	0.15	0.20	0.25	е	0.40 BSC			
b	0.13	0.18	0.23	L	0.30	0.35	0.40	
D	2.45	2.50	2.55	S	0.18	-	-	
E	2.45	2.50	2.55					

12 Lead TDFN Package JEDEC MO-252, Variation 2525E

Tape and Reel Specification

Package Type	# of	Nominal Package Size (mm)	Max Units		Reel &	Trailer A		Leader B		Pocket (mm)	
	Pins		per reel	per box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
TDFN 12L 2.5x2.5mm 0.4P Green	12	2.5x2.5x0.75	3000	3000	178/60	42	168	42	168	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	A0	B0	K0	P0	P1	D0	E	F	w
TDFN 12L 2.5x2.5mm 0.4P Green	2.75	2.75	1.05	4	4	1.55	1.75	3.5	8

Refer to EIA-481 Specifications

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 4.6875 mm³ (nominal). More information can be found at <u>www.jedec.org</u>.

Silego Website & Support

Silego Technology Website

Silego Technology provides online support via our website at <u>http://www.silego.com/</u>. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/ http://greenpak2.silego.com/ http://greenfet.silego.com/ http://greenfet2.silego.com/ http://greenclk.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://store.silego.com/.

Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at <u>info@silego.com</u>.

For specific GreenPAK design or applications questions and support please send email requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

Contact Your Local Sales Representative

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

Contact Silego Directly

Silego can be contacted directly via e-mail at <u>info@silego.com</u> or user submission form, located at the following URL: <u>http://support.silego.com/</u>

Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of worldwide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.