A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

General Description

Operating from a 0.8 V to 2.0 V power supply, the SLG59M1693C is a self-powered, high-performance $17.4 \mathrm{~m} \Omega$, 1.0 A single-channel pFET integrated power switch. The SLG59M1693C's low supply current makes it an ideal pFET integrated power switch in small form-factor personal health monitor and watch applications.
Using a proprietary MOSFET design, the SLG59M1693C achieves a low $\mathrm{RDS}_{\mathrm{ON}}$ across the entire input voltage range. Through the application of Dialog's proprietary CuFET technology, the SLG59M1693C can be used in applications up to 1 A with a very-small $0.56 \mathrm{~mm}^{2}$ WLCSP form factor.

Pin Configuration
Pin A1 Index Mark

Features

- Integrated 1 A Continuous I I_{DS} pFET Power Switch
- Low Typical RDS ${ }_{\text {ON }}$:
- $17.4 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$
- $40 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$
- Input Voltage: 0.8 V to 2.0 V
- Low Typical No-load Supply Current
- When ON: 5.5 nA
- When OFF: $0.83 \mu \mathrm{~A}$
- Integrated $\mathrm{V}_{\text {OUT }}$ Discharge Resistor
- Operating Temperature: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Low $\theta_{\mathrm{JA}}, 4$-pin $0.75 \mathrm{~mm} \times 0.75 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch 4L WLCSP Packaging
- Pb-Free / Halogen-Free / RoHS compliant

Block Diagram

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET

Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Pin Description

Pin \#	Pin Name	Type	Pin Description
A1	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1693C. ON is an asserted HIGH, level-sensitive CMOS input with ON_VIL $<0.3 \mathrm{~V}$ and $\mathrm{ON}, \mathrm{V}_{\mathrm{IH}}>0.85 \mathrm{~V}$. As the ON pin input circuit does not have an internal pull-down resistor, connect this pin to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller - do not allow this pin to be open-circuited.
B1	VIN	MOSFET	Input terminal connection of the p-channel MOSFET. Connect a $1 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground.
B2	VOUT	MOSFET	Output terminal connection of the p-channel MOSFET.
A2	GND	VOUT	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Type	Production Flow
SLG59M1693C	WLCSP 4L	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59M1693CTR	WLCSP 4L (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Power Switch Input Voltage		--	--	2.5	V
$\mathrm{V}_{\text {OUT }}$ to GND	Power Switch Output Voltage to GND		-0.3	--	V_{IN}	V
ON to GND	ON Pin Voltage to GND		-0.3	--	V_{IN}	V
T_{S}	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
$E S D_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
ESD ${ }_{\text {CDM }}$	ESD Protection	Charged Device Model	1000	--	--	V
MSL	Moisture Sensitivity Level		1			
$\theta_{\text {JA }}$	Package Thermal Resistance, Junction-to-Ambient	$0.75 \times 0.75 \mathrm{~mm} 4 \mathrm{~L}$ WLCSP; Determined using a $1 \mathrm{in}^{2}, 2$ oz .copper pad under each VIN and VOUT terminal and FR4 pcb material.	--	110	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{W}_{\text {DIS }}$	Package Power Dissipation		--	--	0.5	W
MOSFET IDS ${ }_{\text {PK }}$	Peak Current from VIN to VOUT	Maximum pulsed switch current, pulse width < $1 \mathrm{~ms}, 1 \%$ duty cycle	--	--	1.5	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise stated). Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Power Switch Input Voltage		0.8	--	2.0	V
I_{IN}	Power Switch Current (Pin B1)	When OFF, $\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, , load	--	0.18	0.39	$\mu \mathrm{A}$
		When OFF, $\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$, No load	--	0.31	0.54	$\mu \mathrm{A}$
		When OFF, $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$, No load	--	0.42	0.70	$\mu \mathrm{A}$
		When OFF, $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$, , oload	--	0.59	0.99	$\mu \mathrm{A}$
		When OFF, $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$, No load	--	0.83	1.34	$\mu \mathrm{A}$
		$\mathrm{ON}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.8 \mathrm{~V}$, , load	--	2.2	226	nA
		$\mathrm{ON}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.2 \mathrm{~V}$, No load	--	3.3	266	nA
		$\mathrm{ON}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.5 \mathrm{~V}$, No load	--	3.3	301	nA
		$\mathrm{ON}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=1.8 \mathrm{~V}$, , load	--	4.4	312	nA
		$\mathrm{ON}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.0 \mathrm{~V}$, No load	--	5.5	335	nA
ION_LKG	ON Pin Input Leakage		--	--	0.7	$\mu \mathrm{A}$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	17.4	19.3	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	40	41.7	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85{ }^{\circ} \mathrm{C}, 2.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	20.1	22.5	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85{ }^{\circ} \mathrm{C}, 0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	42.9	44.9	$\mathrm{m} \Omega$
MOSFET IDS	Current from VIN to VOUT	Continuous	--	--	1.0	A

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
Electrical Characteristics (continued)
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (unless otherwise stated). Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {OUT(SR) }}$	Slew Rate	$\begin{aligned} & 10 \% \mathrm{~V}_{\text {OUT }} \text { to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} ; \mathrm{R}_{\text {LOAD }}=10 \Omega \\ & \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	4	5.9	9.1	V/ms
		$\begin{aligned} & 10 \% \mathrm{~V}_{\text {OUT }} \text { to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} ; \mathrm{R}_{\text {LOAD }}=10 \Omega \\ & \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	2.4	3.6	5.3	V/ms
$\mathrm{T}_{\text {Total_ON }}$	Total Turn On Time	50% ON to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$ $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} ; \mathrm{R}_{\mathrm{LOAD}}=10 \Omega$; $C_{\text {LOAD }}=0.1 \mu \mathrm{~F}$	0.31	0.44	0.66	ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% V_{\text {OUT }} \uparrow \\ & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} ; \mathrm{R}_{\text {LOAD }}=10 \Omega ; \\ & \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	0.24	0.36	0.58	ms
Ton_Delay	ON Delay Time	50% ON to $50 \% V_{\text {OUT }} \uparrow$; $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ $R_{\text {LOAD }}=10 \Omega, C_{\text {LOAD }}=0.1 \mu \mathrm{~F}$	--	0.30	0.47	ms
		$\begin{aligned} & 50 \% \text { ON to } 50 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	0.27	0.45	ms
TVout(R)	$\mathrm{V}_{\text {Out }}$ Rise Time	$\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	0.27	0.37	ms
		$\begin{aligned} & 10 \% \text { to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	0.18	0.24	ms
T Vout(F)	$\mathrm{V}_{\text {OUT }}$ Fall Time	$\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\text {OUT }} \downarrow ; \\ & \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} ; \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	11.8	14.9	$\mu \mathrm{s}$
		$\begin{aligned} & 90 \% \text { to } 10 \% \mathrm{~V}_{\text {OUT }} \downarrow ; \\ & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	11.0	15.9	$\mu \mathrm{s}$
TOFF_Delay	OFF Delay Time	$\begin{aligned} & 50 \% \text { ON to } 50 \% \mathrm{~V}_{\text {OUT }} \downarrow ; \\ & \mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \\ & \hline \end{aligned}$	--	32.8	74.5	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \text { ON to } 50 \% \mathrm{~V}_{\text {OUT }} \downarrow ; \\ & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \end{aligned}$	--	23.3	43.9	$\mu \mathrm{s}$
$\mathrm{C}_{\text {LOAD }}$	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from VOUT to GND	--	--	30	$\mu \mathrm{F}$
R dischrge	Discharge Resistance ($\mathrm{ON}=$ LOW)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \text { Input Bias } \end{aligned}$	121	147	165	Ω
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V} \\ & \text { Input Bias } \end{aligned}$	52	63	75	Ω
ON_V ${ }_{\text {IH }}$	Initial Turn On Voltage		0.85	--	$\mathrm{V}_{\text {IN }}$	V
ON_V $\mathrm{V}_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
$\mathrm{T}_{\text {Total_ON }}, \mathrm{T}_{\text {ON_Delay }}$ and Rise Time Measurement

$\mathrm{RDS}_{\mathrm{ON}}$ vs. Temperature and V_{IN}

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
I_{IN} when $\mathrm{ON}=1.8 \mathrm{~V}$ vs. $\mathrm{V}_{\text {IN }}$ and Temperature

I_{IN} when OFF vs. V_{IN} and Temperature

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Typical Turn-on Waveforms

Figure 1. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}$

Figure 2. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Figure 3. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=30 \mu \mathrm{~F}$

Figure 4. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=30 \mu \mathrm{~F}$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Typical Turn-off Waveforms

Figure 5. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}$

Figure 6. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{LOAD}}=10 \Omega, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Figure 7. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=30 \mu \mathrm{~F}$

Figure 8. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=10 \Omega, \mathrm{C}_{\text {LOAD }}=30 \mu \mathrm{~F}$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
 Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Applications Information

Power Dissipation Considerations

The junction temperature of the SLG59M1693C depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the RDS $_{\mathrm{ON}^{-} \text {-generated voltage drop across the power MOSFET. While the primary contributor }}$ to the increase in the junction temperature of the SLG59M1693C is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}_{\mathrm{TOTAL}}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{PD} \mathrm{TOTAL} \times \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Die junction temperature, in Celsius degrees $\left({ }^{\circ} \mathrm{C}\right)$
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$) - highly dependent on pcb layout
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
In nominal operating mode, the SLG59M1693C's power dissipation can also be calculated by taking into account the voltage drop across the switch ($\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$) and the magnitude of the switch's output current (I_{DS}):

$$
\begin{gathered}
\mathrm{PD}_{\text {TOTAL }}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\mathrm{DS}} \text { or } \\
\text { PD }_{\text {TOTAL }}=\left(\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\mathrm{DS}}\right)\right) \times \mathrm{I}_{\mathrm{DS}}
\end{gathered}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN }}=$ Switch input Voltage, in Volts (V)
$\mathrm{R}_{\text {LOAD }}=$ Output Load Resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Switch output current, in Amps (A)
$\mathrm{V}_{\text {OUT }}=$ Switch output voltage, or $\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\mathrm{DS}}$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
 Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Extending the SLG59M1693C's Maximum Operating Current Range

Some applications require an integrated power switch (IPS) to deliver currents higher than 1 A . One way to address this requirement is to use an IPS with higher current capability. However, such a part may occupy more PCB area or consume more power than optimal for the desired current rating. Another way to obtain higher current capability is to parallel two IPSs as illustrated in Figure 9. This parallel arrangement divides the current between each IPS accordingly to its RDS ${ }_{\text {ON }}$.

Figure 9. Schematic layout of connecting two SLG59M1693C IPSs in parallel
Using two IPSs in parallel lowers the overall RDS $_{\mathrm{ON}}$ while maintaining low current consumption when ON, for any applications up to 2 A . A typical $\mathrm{RDS}_{\mathrm{ON}}$ vs. Temperature and V_{IN} for this configuration is illustrated in Figure 10.

Figure 10. RDS ${ }_{\mathrm{ON}}$ vs. Temperature and V_{IN}

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
 Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

All PCB traces have the elements of resistance, capacitance and inductance. If there were a difference in path length from the voltage source to the IPSs pads, this delta trace length would create a current imbalance. In this case, the PCB layout should be designed properly to minimize parasitic impedance and especially parasitic inductance on VIN and VOUT pins. Excess trace inductance may cause a delay effect during on/off operation. Figure 11 shows a recommended PCB layout for applications using two SLG59M1693Cs in parallel.

Figure 11. PCB layout for using SLG59M1693C in parallel.
Typical operational waveforms of this two IPS solution are illustrated in Figure 12 and Figure 13.

Figure 12. Turn $O N$ operation waveform for $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{LOAD}}=1 \Omega$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Figure 13. Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=0.4 \Omega$

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET

Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Layout Guidelines:

1. Since the VIN and VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils $(0.381 \mathrm{~mm})$ per Ampere. A representative layout, shown in Figure 14, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
2. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input $\mathrm{C}_{\mathbb{I N}}$ and output C LOAD low-ESR capacitors as close as possible to the SLG59M1693C's VIN and VOUT pins;
3. The GND pin should be connected to system analog or power ground plane.

SLG59M1693C Evaluation Board:

A GFET3 Evaluation Board for SLG59M1693C is designed according to the statements above and is illustrated on Figure 14. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for $\mathrm{RDS}_{\mathrm{ON}}$ evaluation.

Figure 14. SLG59M1693C Evaluation Board

Figure 15. SLG59M1693C Evaluation Board Connection Circuit

Basic Test Setup and Connections

Figure 16. SLG59M1693C Evaluation Board Connection Circuit

EVB Configuration

1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
2. Turn on Power Supply and set desired V_{IN} from 0.8 V ... 2.0 V range;

3 .Toggle the ON signal High or Low to observe SLG59M1693C operation.

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
Package Top Marking System Definition

NN -Part Serial Number Field Line 1 where each " N " character can be $A-Z$ and $0-9$
N -Part Serial Number Field Line 2 where each "N" character can be A-Z and 0-9

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
Package Drawing and Dimensions
4 Pin WLCSP Green Package $0.75 \times 0.75 \mathrm{~mm}$

Laser Marking View

Bump View

SIDE View
Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.400	0.450	0.500	D	0.72	0.75	0.78
A1	0.125	0.150	0.175	E	0.72	0.75	0.78
A2	0.275	0.300	0.325	e	0.40 BSC		
b	0.195	0.220	0.245	N	4 (Bump)		

SIDE View
Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.390	0.445	0.500	D	0.72	0.75	0.78
A1	0.125	0.150	0.175	E	0.72	0.75	0.78
A2	0.245	0.270	0.295	e	0.40 BSC		
A3	0.020	0.025	0.030	N	4 (Bump)		
b	0.195	0.220	0.245				

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET

Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
SLG59M1693C 4 Pin WLCSP PCB Landing Pattern

Exposed Bump

(Laser marking view)
Recommended
Land Pattern

SYMM

Non-solder mask defined

Solder mask defined

Solder mask detail (not to scale)

Unit: um

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
 Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Recommended Reflow Soldering Profile

For successful reflow of the SLG59M1693C a recommended thermal profile is illustrated below:

Note: This reflow profile is for classification/preconditioning and are not meant to specify board assembly profile. Actual board assembly profiles should be developed based on specific process needs and board designs and should not exceed parameters depicted on figure above.

Please see more information on IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.352 \mathrm{~mm}^{3}$ (nominal).

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega, 1.0 \mathrm{~A} p F E T$
 Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		 Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{array}{\|c\|} \hline \text { WLCSP 4L } \\ 0.75 \times 0.75 \\ \mathrm{~mm} 0.4 \mathrm{P} \\ \text { Green } \end{array}$	4	$\begin{gathered} 0.75 \times 0.75 \mathrm{x} \\ 0.44 \end{gathered}$	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	$\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width	Tape Thickness
	A0	B0	K0	P0	P1	D0	E	F	W	T
$\begin{gathered} \hline \text { WLCSP 4L } \\ 0.75 \times 0.75 \\ \text { mm 0.4P } \\ \text { Green } \end{gathered}$	0.84	0.84	0.53	4	4	1.5	1.75	3.5	8	0.2

Refer to EIA-481 specification

A $2 \mathrm{~V}, 17.4 \mathrm{~m} \Omega$, 1.0 A pFET
Integrated Power Switch with Discharge in a $0.56 \mathrm{~mm}^{2}$ WLCSP
Revision History

Date	Version	Change
$3 / 28 / 2019$	1.01	Updated Style and Formatting Added Layout Guidelines Fixed typos
$3 / 5 / 2018$	1.00	Production Release

