

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

General Description

The SLG59M1655V is a high-performance 7.8 m Ω nFET power switch designed for all 0.85 V to 5.5V power rail applications up to 9 A. Incorporating reverse-current blocking, the SLG59M1655V is uniquely suited for those power rail applications where output-to-input voltage backfeed conditions are to be avoided. Using a proprietary MOSFET design, the SLG59M1655V achieves it's stable 7.8 m Ω RDS_{ON} across a wide input/supply voltage range. Using Dialog's proprietary CuFET technology, the SLG59M1655V package also exhibits low thermal resistance for high-current operation.

Fully specified over the -40 °C to 85 °C temperature range, the SLG59M1655V is packaged in a space-efficient, low thermal resistance, RoHS-compliant 1.0 mm x 3.0 mm STDFN package.

Features

- High-performance MOSFET Switch Design
 Low Typical RDS_{ON}: 7.8 mΩ
- Steady-state Operating Current: Up to 9 A
- · FET Bulk-switch Reverse-current Blocking
- Supply Voltage: $2.5 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$
- Wide Input Voltage Range: 0.85 V ≤ V_D ≤ V_{DD}
- · Capacitor-adjustable Start-up and Inrush Current Control
- Internal MOSFET Gate Driver
- Thermal Shutdown Protection
- Operating Temperature: -40 °C to 85 °C
- Low θ_{JA}, 14-pin 1.0 mm x 3.0 mm STDFN Packaging
- · Pb-Free / Halogen-Free / RoHS compliant

Pin Configuration

Applications

- Notebook Power Rail Switching
- Tablet Power Rail Switching
- Smartphone Power Rail Switching

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Pin Description

Pin #	Pin Name	Туре	Pin Description
1, 2, 6, 7	D	MOSFET	Drain terminal connections of the n-channel MOSFET. Connect a low-ESR 10- μ F (or larger) capacitor from the D pins (Pins 1, 2, 6, and 7) to ground. Capacitors used at V _D should be rated at 10 V or higher.
3,5	ON	Input	A low-to-high transition on these pins initiates the operation of the SLG59M1655V's state machine. ON is an asserted HIGH, level-sensitive CMOS input with ON_V _{IL} < 0.3 V and ON_V _{IH} > 0.85 V. While there is an internal pull-down circuit to GND (~4 M Ω), connect these pins directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
4	VDD	VDD	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a 0.1 μ F (or larger) capacitor.
8, 9, 13, 14	S	MOSFET	Source terminal connections of the n-channel MOSFET. Connect a low-ESR 10- μ F (up to C_{LOAD}) capacitor from the S pins (Pins 8, 9, 13, and 14) to ground. Capacitors used at V _S should be rated at 10 V or higher.
10, 12	CAP	Input	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from the CAP pins (Pins 10 & 12) to GND sets the V _S slew rate and overall turn-on time of the SLG59M1655V. For additional information, please consult the C _{SLEW} typical performance characteristics on Page 5. Capacitors used at C _{SLEW} should be rated at 10 V or higher.
11	GND	GND	Ground connection. Connect this pin to the system's analog or power ground plane.

Ordering Information

Part Number	Туре	Production Flow
SLG59M1655V	STDFN 14L	Industrial, -40 °C to 85 °C
SLG59M1655VTR	STDFN 14L (Tape and Reel)	Industrial, -40 °C to 85 °C

An Ultra-small, 7.8 m Ω , 9A, Single-channel Integrated Power Switch with Reverse-current Blocking

Absolute Maximum Ratings

Parameter	Description	Conditions		Тур.	Max.	Unit
V _{DD}	Power Supply				6	V
Τ _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
ESD _{CDM}	ESD Protection	Charged Device Model	1000			V
MSL	Moisture Sensitivity Level				1	
θ_{JA}	Package Thermal Resistance, Junction-to-Ambient	1mm x 3mm 14L STDFN; Determined us- ing 1 in ² , 1.2 oz. copper pads under VIN and VOUT on FR4 pcb material		71		°C/W
W _{DIS}	Package Power Dissipation				1.2	W
MOSFET IDS _{CONT}	Max Continuous Switch Current				9	А
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 10 continuous seconds out of every 100 seconds			12	А

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

 T_A =-40 °C to 85 °C, unless otherwise noted.

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage		2.5		5.5	V
	Power Supply Current, when OFF			0.1	1	μA
I _{DD}	Power Supply Current, when ON			50	100	μA
		T _A 25°C, I _{DS} = 0.1 A		7.8	10.5	mΩ
RDS _{ON}	ON Resistance	T _A 70°C, I _{DS} = 0.1 A		9.0	12.1	mΩ
		T _A 85°C, I _{DS} = 0.1 A		8.4	12.7	mΩ
MOSFET IDS	Current from Drain to Source	Continuous			9	А
IDS _{LKG}	IDS Leakage (Reverse Blocking enabled)	$V_{S} = 1.0 V \text{ to } 5.0 V, V_{DD} = V_{D} = 0 V,$ ON = LOW		0.5	5.0	μA
VD	Drain Voltage		0.85		V _{DD}	V
T _{ON_Delay}	ON Delay Time	50% ON to V _S Ramp Start, R _{LOAD} = 20 Ω, C _{LOAD} = 10 µF,		270	500	μs
		50% ON to 90% V _S	Set by	External	External C _{SLEW} ¹	
T _{Total_ON}	Total Turn On Time	Example: C_{SLEW} = 4 nF, V_{DD} = V_D = 5 V, R_{LOAD} = 20 Ω , C_{LOAD} = 10 μ F		1.1		ms
		10% V_{S} to 90% V_{S}	Set by	External	C _{SLEW} ¹	V/ms
V _{S(SR)}	V _S Slew Rate	Example: C_{SLEW} = 4 nF, V_{DD} = V_D = 5 V, R_{LOAD} = 20 Ω , C_{LOAD} = 10 μ F		6.0		V/ms

An Ultra-small, 7.8 m Ω , 9A, Single-channel Integrated Power Switch with Reverse-current Blocking

Electrical Characteristics (continued)

 $T_A = -40$ °C to 85 °C, unless otherwise noted.

	50% ON to V _S Fall Start,		l		
	$V_{DD} = V_D = 5 \text{ V}, \text{ R}_{LOAD} = 20 \Omega,$ no C_{LOAD}		1.7	3	μs
Input Voltage on ON pin		0.85		V _{DD}	V
nput Voltage on ON pin		-0.3	0	0.3	V
ut Load Capacitance	C _{LOAD} connected from S to GND			1000	μF
nal shutoff turn-on temperature			125		°C
nal shutoff turn-off temperature			100		°C
nal shutoff time				1	ms
n n	nput Voltage on ON pin nput Voltage on ON pin t Load Capacitance nal shutoff turn-on temperature nal shutoff turn-off temperature	nput Voltage on ON pin nput Voltage on ON pin t Load Capacitance C _{LOAD} connected from S to GND nal shutoff turn-on temperature nal shutoff turn-off temperature	nput Voltage on ON pin0.85nput Voltage on ON pin-0.3t Load CapacitanceCLOAD connected from S to GNDnal shutoff turn-on temperaturenal shutoff turn-off temperature	nput Voltage on ON pin0.85nput Voltage on ON pin-0.30t Load CapacitanceC _{LOAD} connected from S to GNDnal shutoff turn-on temperature125nal shutoff turn-off temperature100	nput Voltage on ON pin0.85V_DDnput Voltage on ON pin-0.300.3t Load CapacitanceCLOAD connected from S to GND1000nal shutoff turn-on temperature125nal shutoff turn-off temperature100

1. Refer to typical timing parameter vs. C_{SLEW} performance charts for additional information when available.

$T_{ON_Delay}, V_{S(SR)},$ and T_{Total_ON} Timing Details

Note: *Rise and Fall Times of the ON Signal are 100 ns

	_	4	_			_	
D	а	ta	S	n	е	e	τ.

An Ultra-small, 7.8 m Ω , 9A, Single-channel Integrated Power Switch with Reverse-current Blocking

Typical Performance Characteristics

RDS_{ON} vs. Temperature, V_{DD} , and V_{D}

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

T_{Total ON} vs. C_{SLEW}, V_{DD}, V_D, and Temperature

$V_{S(SR)}$ vs. C_{SLEW} , V_{DD} , and V_{D}

Datasheet	Revision 1.03	12-Oct-2018
CFR0011-120-01	Page 6 of 16	© 2018 Dialog Semiconductor

SLG59M1655V

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

13.0 $2.5V \leq V_{\text{DD}} \leq 5V$ 12.5 $1.5V \le V_D \le 5V$ 12.0 C_{SLEW} = 2 nF 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 V_{s(sR)} - V/ms 7.5 7.0 6.5 6.0 C_{SLEW} = 3.9 nF 5.5 5.0 4.5 4.0 C_{SLEW} = 6.8 nF 3.5 3.0 2.5 C_{SLEW} = 12 nF 2.0 1.5 🛎 C_{SLEW} = 22 nF 1.0 0.5 0.0 -40 25 85 Temperature - °C

$V_{S(SR)}$ vs. Temperature, V_{DD} , V_D , and C_{SLEW}

D	a	ta	S	h	ρ	e	F
-	α	ιa	9		C	C	L

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

SLG59M1655V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_D after V_{DD} exceeds 1 V. Then allow V_D to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_D need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_D less than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_D have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

Power Dissipation

The junction temperature of the SLG59M1655V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59M1655V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD = RDS_{ON} \times I_{DS}^{2}$$

where: PD = Power dissipation, in Watts (W) RDS_{ON} = Power MOSFET ON resistance, in Ohms (Ω) I_{DS} = Output current, in Amps (A)

and

$$T_J = PD \times \Theta_{JA} + T_A$$

where:

 T_J = Junction temperature, in Celsius degrees (°C) Θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) T_A = Ambient temperature, in Celsius degrees (°C)

For more information on Dialog GreenFET3 integrated power switch features, please visit our <u>Documents</u> search page at our website and see <u>App Note "AN-1068 GreenFET3 Integrated Power Switch Basics"</u>.

		ha	-
Da	tas	ne	eι

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Layout Guidelines:

- 1. The VDD pin needs a 0.1 µF and 10 µF external capacitors to smooth pulses from the power supply. Locate these capacitors as close as possible to the SLG59M1655V's PIN4.
- 2. Since the D and S pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with an absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
- 3. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output C_{LOAD} low-ESR capacitors as close as possible to the SLG59M1655V's D and S pins;
- 4. The GND pin should be connected to system analog or power ground plane.

SLG59M1655V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1655V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS_{ON} evaluation.

Please solder your SLG59M1655V here

Figure 1. SLG59M1655V Evaluation Board.

D -	4		- 4
112	tas	ne	OT.
20			CL.

An Ultra-small, 7.8 m Ω , 9A, Single-channel Integrated Power Switch with Reverse-current Blocking

Figure 2. SLG59M1655V Evaluation Board Connection Circuit.

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Basic Test Setup and Connections

Figure 3. Typical connections for GFET3 Evaluation.

EVB Configuration

1.Connect oscilloscope probes to D1/VIN, D2, S1/VO1, S1/VO2, ON1, ON2 etc.;

2.Turn on Power Supply 1 and set desired V_{DD} from 2.5 V…5.5 V range;

3.Turn on Power Supply 2 and set desired V_{D} from 0.85 V…5.5 V range;

4. Toggle the ON signal High or Low to observe SLG59M1655V operation.

D	а	ta	S	h	e	e	ŧ
-	u		-		-		

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Package Top Marking System Definition

PP - Part ID Field DD- Date Code Field¹ L - Lot Traceability Code Field¹

Note 1: Each character in code field can be alphanumeric A-Z and 0-9

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Package Drawing and Dimensions

14 Lead STDFN Package 1 mm x 3 mm (Fused Lead)

	n	12.2	mm
U		ιι.	
_			

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.050	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.20	0.25	0.30
е	().40 BSC	,	L2	0.06	0.11	0.16

An Ultra-small, 7.8 m Ω , 9A, Single-channel Integrated Power Switch with Reverse-current Blocking

Recommended Land Pattern and PCB Layout

Note: All dimensions are in micrometers (µm)

Datasheet	Revision 1.03	12-Oct-2018
CFR0011-120-01	Page 14 of 16	© 2018 Dialog Semiconductor

An Ultra-small, 7.8 m Ω , 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Tape and Reel Specifications

Baakaga	kage # of Nominal		Max Units		Reel &	Leader (min)		Trailer (min)		Таре	Part
Package Type	# of Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 14L 1x3mm 0.4P FC	14	1x3x0.55mm	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	К0	P0	P1	D0	E	F	W
STDFN 14L 1x3mm 0.4P FC		3.15	0.7	4	4	1.5	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 1.65 mm³ (nominal). More information can be found at www.jedec.org.

An Ultra-small, 7.8 m $\Omega,$ 9 A, Single-channel Integrated Power Switch with Reverse-current Blocking

Revision History

Date	Version	Change	
10/12/2018	1.03	Clarified Pin Names Updated style and formatting Added Layout Guidelines	
1/20/2016	1.02	Updated IDD values	
1/14/2016	1.01	Updated Title, General Description, and Features Updated Pin Descriptions Updated text for clarity	
10/7/2015	1.00	Production Release	
10/6/2015	0.50	Preliminary Release	
10/6/2015	0.10	Advanced Release	