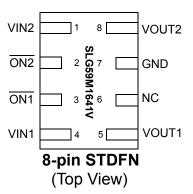


SILEGO Ultra-small 2-Channel 45 mΩ/2 A Power Switch with Reverse-Current Blocking

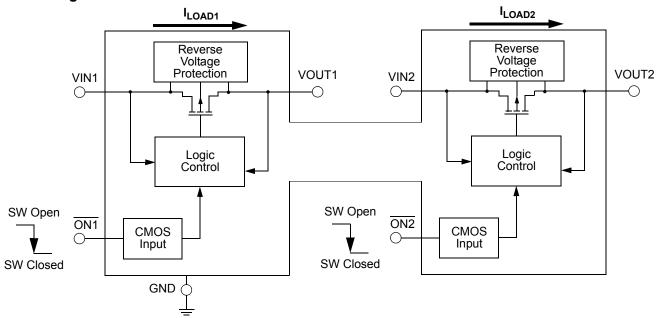
General Description


The SLG59M1641V is a dual-channel, 45 m Ω PMOS power switch designed to switch 1.5 to 5 V power rails up to 2 A in each channel. When either channel is enabled, reverse-current protection will quickly open the switch in the event of a reverse-voltage condition is detected (a $V_{OUT} > V_{IN} + 50$ mV condition opens the switch). In the event that the channel's VIN voltage is too low, the power switch also contains an internal UVLO threshold monitor to keep or to turn the switch OFF. Each power switch is independently controlled via its own low-voltage compatible CMOS input.

Designed to operate over a -40°C to 85°C range, the SLG59M1641V is available in a RoHS-compliant, ultra-small 1.6 x 1.0 mm STDFN package.

Features

- Integrated 2-Channel PMOS Power Switch
- 2 A Maximum Continuous Switch Current per Channel
- Low Typical RDS_{ON}:
 - 45 mΩ at VIN = 5 V
 - 60 mΩ at VIN = 2.5 V
 - 80 mΩ at VIN = 1.5 V
- Operating Voltage: 1.5 V to 5.5 V
- · Reverse-current/voltage Protection
- · Low-voltage CMOS Logic Compatible Switch Control
- Operating temperature range: -40°C to 85°C
- · Pb-Free / Halogen-Free / RoHS compliant packaging


Pin Configuration

Applications

- · Power-Rail Switching:
 - · Notebook/Laptop/Tablet PCs
 - Smartphones/Wireless Handsets
 - · High-definition Digital Cameras
 - · Set-top Boxes
- · Point of Sales Pins
- GPS Navigation Devices

Block Diagram

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	VIN2	MOSFET	Input and source terminal of MOSFET #2. Bypass the VIN2 pin to GND with a 10 μ F (or larger), low-ESR capacitor.
2	ON2	Input	$\overline{\text{ON2}}$ turns Channel 2 MOSFET ON and is a low logic-level CMOS input with V _{IL} < 0.3 V and V _{IH} > 1 V. As the $\overline{\text{ON2}}$ input circuit does not have an internal pull-down resistor, connect $\overline{\text{ON2}}$ pin directly to a GPIO controller – do not allow this pin to be open circuited.
3	ON1	Input	$\overline{\text{ON1}}$ turns Channel 1 MOSFET ON and is a low-logic level CMOS input with V _{IL} < 0.3V and V _{IH} > 1V. As the $\overline{\text{ON1}}$ input circuit does not have an internal pull-down resistor, connect $\overline{\text{ON1}}$ pin directly to a GPIO controller – do not allow this pin to be open circuited.
4	VIN1	MOSFET	Input and source terminal of MOSFET #1. Bypass the VIN1 pin to GND with a 10 μ F (or larger), low-ESR capacitor.
5	VOUT1	MOSFET	Output and drain terminal of MOSFET #1.
6	NC	No Connect	No connection. Do not make connection to any other pin - leave Pin 6 as an open circuit.
7	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.
8	VOUT2	MOSFET	Output and drain terminal of MOSFET #2.

Ordering Information

Part Number	Туре	Production Flow
SLG59M1641V	STDFN	Industrial, -40 °C to 85 °C
SLG59M1641VTR	STDFN (Tape and Reel)	Industrial, -40 °C to 85 °C

000-0059M1641-106 Page 2 of 11

Absolute Maximum Ratings

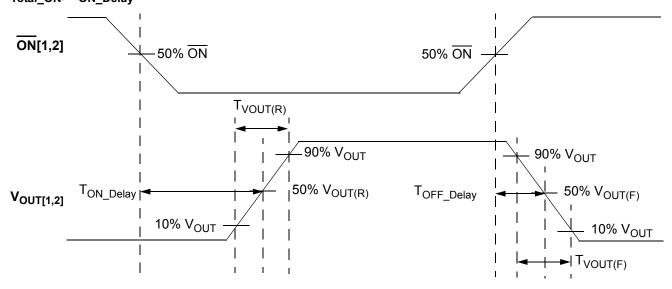
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Power Supply		-0.3		6	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
ESD _{CDM}	ESD Protection	Charged Device Model	1000			V
MSL	Moisture Sensitivity Level			1		
θ_{JA}	Thermal Resistance	1.0 x 1.6 mm 8L STDFN		82		°C/W
T _{J,MAX}	Maximum Junction Temperature			150		°C
MOSFET IDS _{CONT}	Continuous Current from VIN to VOUT	Each channel, T _J < 150°C	-		2	Α
MOSFET IDS _{PK}	Peak Current from Drain to Source	Maximum pulsed switch current, pulse width < 1 ms, 1% duty cycle			2.5	Α

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

1.5 V \leq V_{IN[1,2]} \leq 5.5 V; C_{IN} = 10 μ F, T_A =-40 °C to 85 °C, unless otherwise noted. Typical values are at T_A = 25 °C (unless otherwise stated)

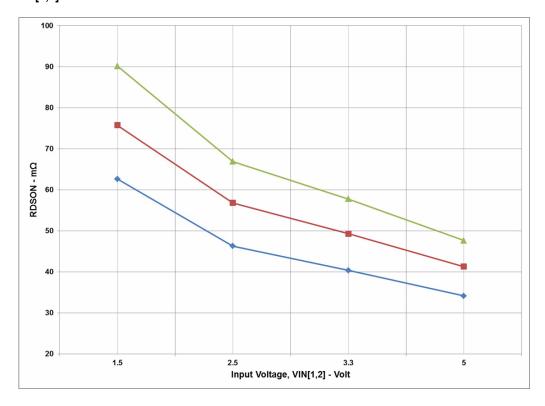
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{IN[1,2]}	Switch Input Voltage		1.5		5.5	V
	VIN Undervoltage Lockout Thresh-	$V_{IN} \uparrow$, $V_{\overline{ON}} = 0V$, $I_{OUT} = -100 \text{ mA}$			1.2	V
$V_{IN(UVLO)}$	old	$V_{IN} \downarrow$, $V_{\overline{ON}} = 0V$, $R_{LOAD} = 10 \Omega$	0.5			V
I	Quiescent Supply Current, Both	V_{IN} = 5.25 V, $V_{\overline{ON}}$ = LOW, I_{OUT} = 0 mA		3.5	5.3	μΑ
I _{IN}	Channels	V_{IN} = 1.5 V, $V_{\overline{ON}}$ = LOW, I_{OUT} = 0 mA		2.5	4	μΑ
l	OFF Mode Supply Current, Both	V_{IN} = 5.25 V, $V_{\overline{ON}}$ = V_{IN} , R_{LOAD} = 1 M Ω		1	1.5	μΑ
I _{IN(OFF)}	Channels	V_{IN} = 1.5 V, $V_{\overline{ON}}$ = V_{IN} , R_{LOAD} = 1 M Ω		0.4	1	μΑ
		$T_A = 25$ °C, $V_{IN} = 5.0 \text{ V}$, $I_{LOAD} = -200 \text{ mA}$		45	55	mΩ
${\sf RDS_{ON}}$	Static Drain to Source ON Resistance	$T_A = 25$ °C, $V_{IN} = 2.5$ V, $I_{LOAD} = -200$ mA		60	72	mΩ
		$T_A = 25$ °C, $V_{IN} = 1.5$ V, $I_{LOAD} = -200$ mA		80	96	mΩ
V _{REVERSE}	Reverse-current Voltage Threshold			50		mV
I _{REVERSE}	Reverse-current Leakage Current after Reverse Current Event	$V_{IN} = 0 \text{ V}, V_{OUT} = 1.5 \text{ V to } 5.25 \text{ V};$ $V_{\overline{ON1}} = V_{\overline{ON2}} = V_{OUT}; T_A = 25 ^{\circ}\text{C}$		0.6	1.5	μA
V _{ON[1,2]}	ON[1,2] Pin Voltage Range		0		V _{IN}	V
I _{ON(Leakage)}	ON[1,2] Pin Leakage Current	$1.4 \text{ V} \le V_{\overline{ON}} \le 5.25 \text{ V or } V_{\overline{ON}} = \text{GND}$			1	μA
ON_V _{IH}	ON[1,2] Pin Input High Voltage		1		V_{DD}	V
ON_V _{IL}	ON[1,2] Pin Input Low Voltage		-0.3	0	0.3	V

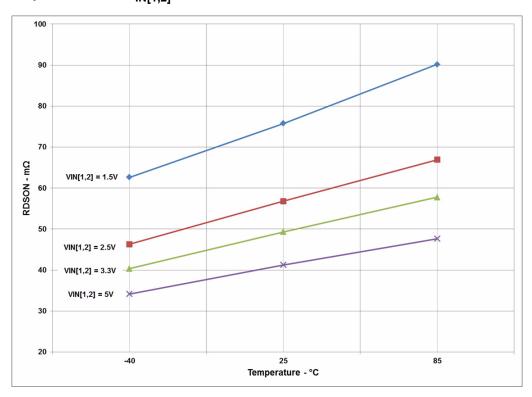


Electrical Characteristics (continued)

1.5 V \leq V_{IN[1,2]} \leq 5.5 V; C_{IN} = 10 μ F, T_A =-40 $^{\circ}$ C to 85 $^{\circ}$ C, unless otherwise noted. Typical values are at T_A = 25 $^{\circ}$ C (unless otherwise stated)

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
ON _{HYS}	ON[1,2] Hysteresis			60		mV
T _{REV}	Reverse-current Detect Response Delay	V _{IN} = 5 V		10		μs
T _{REARM}	Reverse Detect Rearm Time			16		μs
т	ON[1,2] Delay Time	50% \overline{ON} to 50% $V_{OUTx} \uparrow$; $T_A = 25^{\circ}C$, $V_{INx} = 5$ V; $R_{LOAD} = 10 \Omega$, $C_{LOAD} = 0.1 \mu F$	0.9		5	μs
T _{ON_Delay}	ON[1,2] Delay Time	50% V_{IN} to 50% V_{OUTx} ↑; T_A = 25°C, V_{INx} = 1.5 V; R_{LOAD} = 10 Ω, C_{LOAD} = 0.1 μF	30		85	μs
T _{VOUT(R)}	VOUT[1,2] Rise Time	10% to 90% V_{OUTx} ↑; $T_A = 25$ °C, $V_{INx} = 5$ V; $R_{LOAD} = 10$ Ω, $C_{LOAD} = 0.1$ μF	0.7	1.1	1.5	μs
	VOOT[1,2] RISE TIME	10% to 90% $V_{OUTx} \uparrow$; $T_A = 25$ °C, $V_{INx} = 1.5$ V; $R_{LOAD} = 10$ Ω, $C_{LOAD} = 0.1$ μF	20	31	42	μs
T _{VOUT(F)}	VOUT[1,2] Fall Time	90% to 10% $V_{OUTx} \downarrow$; $T_A = 25$ °C, $V_{INx} = 5$ V; $R_{LOAD} = 10$ Ω, $C_{LOAD} = 0.1$ μF			3	μs
	VOOT[1,2] Fail Tillie	90% to 10% $V_{OUTx} \downarrow$; T_A = 25°C, V_{INx} = 1.5 V; R_{LOAD} = 10 Ω, C_{LOAD} = 0.1 μF			3.5	μs
T _{OFF_Delay}	OFF Delay Time	$50\% \overline{ONx}$ to $50\% V_{OUTx} \downarrow$; $T_A = 25$ °C, $V_{INx} = 5 V$; $R_{LOAD} = 10 \Omega$, $C_{LOAD} = 0.1 \mu F$			4.5	μs
	Of F Delay Time	$\overline{\text{50\% ONx}}$ to 50% V _{OUTx} ↓; T _A = 25°C, V _{INx} = 1.5 V; R _{LOAD} = 10 Ω, C _{LOAD} = 0.1 μF			5.2	μs


$\rm T_{Total_ON}, \, T_{ON_Delay}$ and Slew Rate Measurement


000-0059M1641-106 Page 4 of 11

$\ensuremath{\mathsf{RDS}}_{ON}$ vs. $\ensuremath{\mathsf{V}}_{\ensuremath{\mathsf{IN}}\ensuremath{[1,2]}}$ and Temperature

$\ensuremath{\mathsf{RDS}_\mathsf{ON}}$ vs.Temperature and $V_{\ensuremath{\mathsf{IN}}\xspace[1,2]}$

000-0059M1641-106 Page 5 of 11

V_{IN[1,2]} Inrush Current Details

When either channel of the SLG59M1641V is enabled with ON[1,2] \uparrow , the power switch closes to charge the $V_{OUT[1,2]}$ output capacitor to $V_{IN[1,2]}$. The charging current drawn from VIN[1,2] is commonly referred to as "VIN inrush current" and can cause the input power source to collapse if the VIN inrush current is too high.

Since the $V_{OUT[1,2]}$ rise time of the SLG59M1641V is fixed, $V_{IN[1,2]}$ inrush current is then a function of the output capacitance at $V_{OUT[1,2]}$. The expression relating $V_{IN[1,2]}$ inrush current, the SLG59M1641V $V_{OUT[1,2]}$ rise time, and $C_{LOAD[1,2]}$ is:

$$V_{IN[1,2]}$$
 Inrush Current = $C_{LOAD[1,2]} \times \frac{\Delta V_{OUT[1,2]}}{V_{OUT[1,2]}$ Rise Time

where in this expression $\Delta V_{OUT[1,2]}$ is equivalent to 0.8 x $V_{IN[1,2]}$ if the initial SLG59M1641V's output voltages are zero.

In the table below are examples of V_{IN[1,2]} inrush currents assuming zero initial charge on C_{LOAD[1,2]} as a function of V_{IN[1,2]}.

V _{IN[1,2]}	V _{OUT[1,2]} Rise Time	C _{LOAD[1,2]}	Inrush Current		
1.5 V	31 μs	0.1 μF	3.8 mA		
5 V	1 μs	0.1 μF	400 mA		

Since the relationship is linear and If $C_{LOAD[1,2]}$ were increased to 1 μ F, then the $V_{IN[1,2]}$ inrush currents would be 10x higher in either example. If a large $C_{LOAD[1,2]}$ capacitor is required in the application and depending upon the strength of the input power source, it may very well be necessary to increase the C_{IN} -to- C_{LOAD} ratio to minimize VIN[1,2] droop during turn-on.

For other V_{OUT[1,2]} rise time options, please contact Silego for additional information.

Power Dissipation

The junction temperature of the SLG59M1641V depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the RDS_{ON}-generated voltage drop across each power MOSFET. While the primary contributor to the increase in the junction temperature of the SLG59M1641V is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD_{TOTAL} = (RDS_{ON1} \times I_{OUT1}^{2}) + (RDS_{ON2} \times I_{OUT2}^{2})$$

where:

PD_{TOTAL} = Total package power dissipation, in Watts (W)

 $RDS_{ON[1,2]}$ = Channel 1 and Channel 2 Power MOSFET ON resistance, in Ohms (Ω), respectively

 $I_{OUT[1,2]}$ = Channel 1 and Channel 2 Output current, in Amps (A), respectively and

$$T_J = PD_{TOTAL} \times \theta_{JA} + T_A$$

where:

T_{.I} = Die junction temperature, in Celsius degrees (°C)

 θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) – highly dependent on pcb layout

T_A = Ambient temperature, in Celsius degrees (°C)

000-0059M1641-106 Page 6 of 11

Power Dissipation (continued)

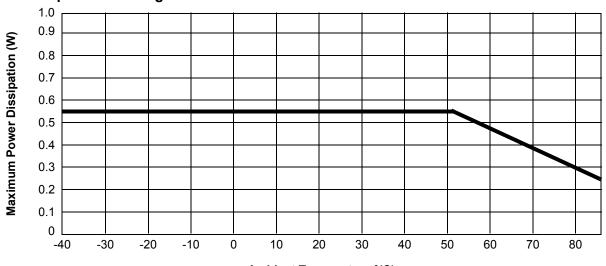
In nominal operating mode, the SLG59M1641V's power dissipation can also be calculated by taking into account the voltage drop across each switch $(V_{INx}-V_{OUTx})$ and the magnitude of that channel's output current (I_{OUTx}) :

$$PD_{TOTAL} = [(V_{IN1} - V_{OUT1}) \times I_{OUT1}] + [(V_{IN2} - V_{OUT2}) \times I_{OUT2}] \text{ or}$$

$$PD_{TOTAL} = [(V_{IN1} - (R_{LOAD1} \times I_{OUT1})) \times I_{OUT1}] + [(V_{IN2} - (R_{LOAD2} \times I_{OUT2})) \times I_{OUT2}]$$

where:

PD_{TOTAL} = Total package power dissipation, in Watts (W)


V_{IN[1,2]} = Channel 1 and Channel 2 Input Voltage, in Volts (V), respectively

 $R_{LOAD[1,2]}$ = Channel 1 and Channel 2 Output Load Resistance, in Ohms (Ω), respectively

I_{OUT[1,2]} = Channel 1 and Channel 2 output current, in Amps (A), respectively

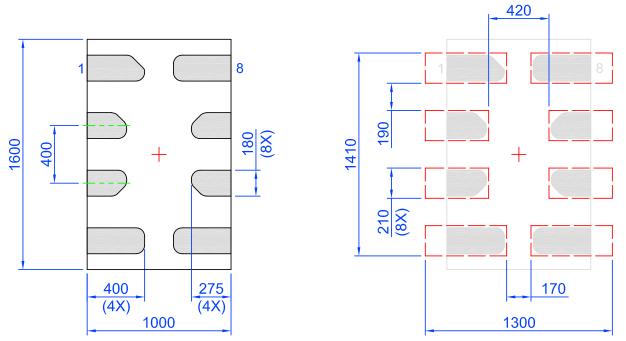
 $V_{OUT[1,2]}$ = Channel 1 and Channel 2 output voltage, or $R_{LOAD[1,2]}$ x $I_{OUT[1,2]}$, respectively

Power Dissipation Derating Curve

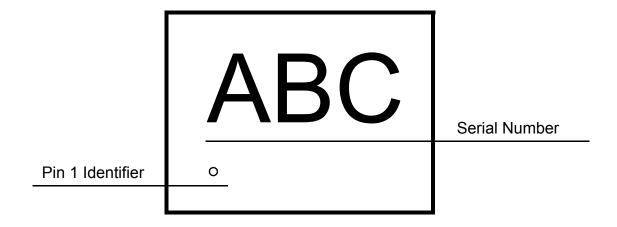
Ambient Temperature °(C)

Note: Each V_{IN}, V_{OUT} = 1 in² 1.2 oz. copper on FR4

000-0059M1641-106 Page 7 of 11

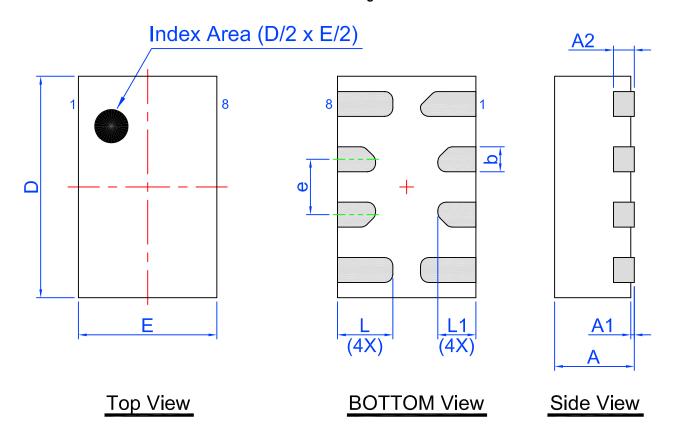


SLG59M1641V Layout Suggestion



Note: All dimensions shown in micrometers (μm)

Package Top Marking System Definition


ABC - 3 alphanumeric Part Serial Number where A, B, or C can be A-Z and 0-9

000-0059M1641-106 Page 8 of 11

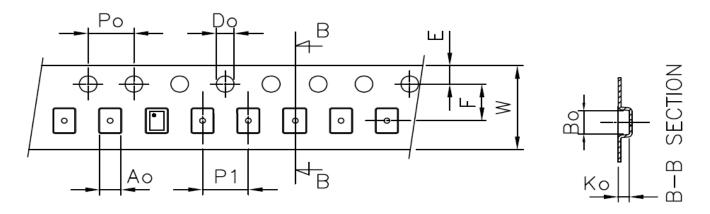
Package Drawing and Dimensions

8 Lead STDFN Package 1.0 x 1.6 mm

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	_	0.050	Е	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.13	0.18	0.23	L1	0.225	0.275	0.325
е	().40 BSC	,				

000-0059M1641-106 Page 9 of 11



Tape and Reel Specifications

Package	# of	Nominal	Max Units		Reel & Leader (min)		Trailer (min)		Tape	Part	
Туре	Pins	Package Size [mm]	per Reel	per Reel per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]	Width [mm]	Pitch [mm]
STDFN 8L 1x1.6mm 0.4P FCD Green		1.0 x 1.6 x 0.55	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	PocketBTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge		Tape Width
	A0	В0	K0	P0	P1	D0	E	F	w
STDFN 8L 1x1.6mm 0.4P FCD Green	1.12	1.72	0.7	4	4	1.55	1.75	3.5	8

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.88~\text{mm}^3$ (nominal). More information can be found at www.jedec.org.

000-0059M1641-106 Page 10 of 11

Revision History

Date	Version	Change
8/28/2017	1.06	Updated Inrush Current Details Fixed typos
4/13/2017	1.05	Fixed Reverse Voltage Detection equation
6/29/2016	1.04	Updated T _{REARM}
4/4/2016	1.03	Updated Electrical Characteristics
2/17/2016	1.02	Updated POD and Landing Pattern
2/9/2016	1.01	Updated Electrical Characteristics
2/3/2016	1.00	Production Release

000-0059M1641-106 Page 11 of 11