

1 Description

The iW1822 integrates a high performance AC/DC power supply controller using digital control technology and a power BJT switch in one package to enable compact peak current mode PWM flyback power supplies. The device operates in quasi-resonant mode and features multiple key protection features, allowing designs with improved efficiency and lower EMI, while lowering the bill of material cost.

The iW1822 features a distinctive soft-start scheme, which allows for fast and yet smooth start-up with both small and large capacitive loads. It removes the need for a secondary feedback circuit while achieving excellent line and load regulation. It also eliminates the need for loop compensation components while maintaining stability across all operating conditions. The pulse-by-pulse waveform analysis allows for fast dynamic load response. The built-in power limit function enables optimized transformer design for a wide input voltage range.

Dialog's innovative, proprietary technology ensures that power supplies built with the iW1822 can achieve both the highest average efficiency and less than 30mW no-load power consumption. And, the iW1822 can start-up into a wide range of capacitive loads at 5V to 12V or higher output voltages, making it ideal for networking, set-top box and home appliance power supply applications.

2 Features

- Optimized for 12V/1.5A AC/DC adapters with < 30mW no-load power consumption at 230V_{AC} and fast dynamic response
- AccuSwitch[™] technology integrated 900V bipolar junction transistor (BJT)
- Adaptively controlled soft-start enables fast and smooth start-up for a wide range of capacitive loads (from 330µF to 6,000µF)
- Very tight constant voltage and constant current regulation over entire operating range
- PrimAccurate™ primary-side feedback eliminates optocoupler and simplifies design
- EZ-EMI[™] design enhances manufacturability

- Intrinsically low common mode noise
- Optimized 72kHz maximum PWM switching frequency achieves best size and efficiency
- Adaptive multi-mode PWM/PFM control improves efficiency
- Quasi-resonant operation for highest overall efficiency
- Dynamic base current control
- No external loop compensation components required
- Built-in single-point protections against output shortcircuit, output low impedance, and output overvoltage
- Built-in over-temperature protection (OTP)
- No audible noise over entire operating range

3 Applications

- Network power adapters for ADSL, wireless access
- AC/DC adaptor for set top box
- AC/DC power supplies for home appliances and industrial applications

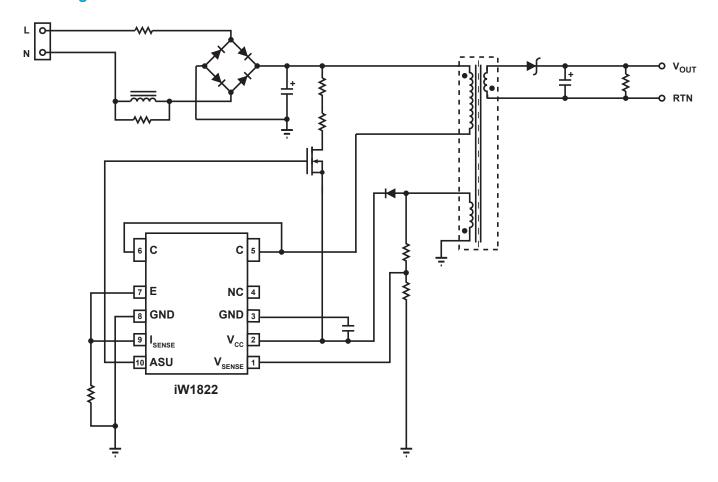


Figure 3.1: iW1822 Typical Application Circuit

WARNING:

The iW1822 is intended for high voltage AC/DC offline applications. Contact with live high voltage offline circuits or improper use of components may cause lethal or life threatening injuries or property damage. Only qualified professionals with safety training and proper precaution should operate with high voltage offline circuits.

iW1822 Output Power Table at Universal Input (85V_{AC}-264V_{AC})

Condition	Open Frame ¹	
Output Power (W) ²	18	

Notes:

- Note 1. Maximum practical continuous output power measured at open frame ambient temperature of 50°C while minimum bulk capacitor voltage is kept above 90V (test unit is placed in a non-ventilated environment).
- Note 2. The output power can vary depending on the power supply system designs and operating conditions.

4 Pinout Description

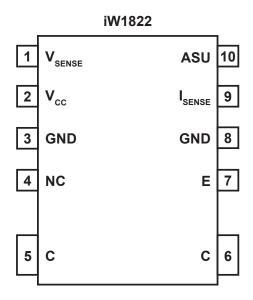


Figure 4.1: 10-Lead SOIC Batwing Package

Pin Number	Pin Name	Туре	Pin Description	
1	V _{SENSE}	Analog Input	Auxiliary voltage sense (used for primary-side regulation).	
2	V _{CC}	Power Input	Power supply for control logic.	
3	GND	Ground	Ground.	
4	NC		This pin must be left floating.	
5	С	BJT Collector	Collector of internal BJT.	
6	С	BJT Collector	Collector of internal BJT.	
7	E	BJT Emitter	Emitter of internal BJT.	
8	GND	Ground	Ground.	
9	I _{SENSE}	Analog Input	Primary current sense. Used for cycle-by-cycle peak current control and current limit.	
10	ASU	Output	Control signal. Used for active start-up device.	

5 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage if exceeded.

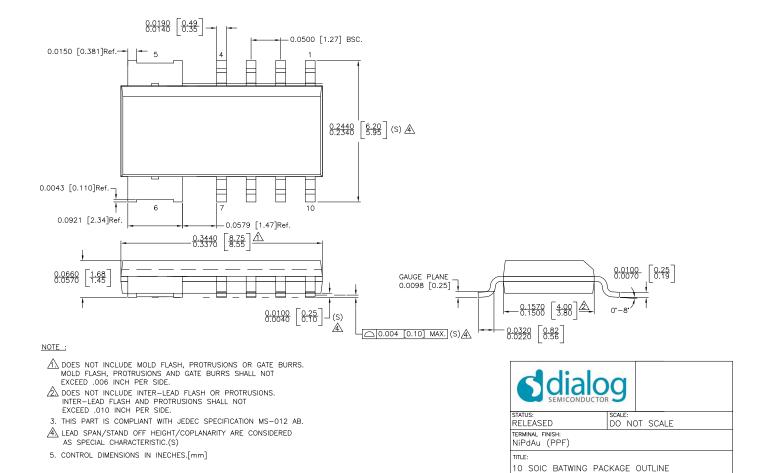
Parameter	Symbol	Value	Units
DC supply voltage range (pin 2, I _{CC} = 20mA max)	V _{CC}	-0.3 to 25.0	V
Continuous DC supply current at V _{CC} pin (V _{CC} = 15V)	I _{cc}	25	mA
ASU output (pin 10)		-0.3 to 19.0	٧
V _{SENSE} input (pin 1, I _{VSENSE} ≤ 10mA)		-0.7 to 4.0	V
I _{SENSE} input (pin 9)		-0.3 to 4.0	V
Collector-Base breakdown voltage	V_{CBO}	900	V
Collector-Emitter breakdown voltage	V _{CES}	900	V
Collector current (Note 1)	I _C	4	А
Collector peak current (Note 1) (t _p < 1ms)	I _{CM}	8	А
Maximum junction temperature	T_{JMAX}	150	°C
Operating junction temperature	T _{JOPT}	-40 to 150	°C
Storage temperature	T _{STG}	-55 to 150	°C
Electrostatic Discharge Capability (Human Body Model), JEDEC JS-001-2017	ESD _(HBM)	±2000	V
Electrostatic Discharge Capability (Charged Device Model), JS-002-2014	ESD _(CDM)	±1000	V
Latch-up test per JESD78E		±100	mA

Notes:

Note 1. Limited by maximum junction temperature.

6 Thermal Characteristics

Parameter	Symbol	Value	Units
Thermal Resistance Junction-to-Ambient ¹	θ_{JA}	55.2	°C/W
Characterization Parameter Junction-to-Collector pin (pin 5 and pin 6) ²	Ψ _J -collector	5.8	°C/W
Thermal Shutdown Threshold ³	T _{SD}	150	°C
Thermal Shutdown Recovery³	T _{SD-R}	100	°C
Thermal Shutdown Recovery³ (iW1822-11)	T _{SD-R}	120	°C


Notes:

- Note 1. Device is mounted on a 4-layer JEDEC board with 100mm² of 70µm thick copper, in a one-cubic-foot natural convection chamber
- Note 2. $\psi_{J\text{-}COLLECTOR}$ [Psi Junction to Collector pin] provides an estimation of the die junction temperature relative to the Collector pin [internal BJT Collector] surface temperature.
- Note 3. These parameters are typical and they are guaranteed by design.

Product Summary Rev. 0.3 Preliminary 17-Jun-2020

7 Physical Dimensions

8 Ordering Information

Part no.	Part no. Options		Description
iW1822-00	Cable Comp = 0mV, OTP recovery threshold = 100°C	SO-10 Batwing	Tape & Reel ¹
iW1822-01	Cable Comp = 150mV, OTP recovery threshold = 100°C	SO-10 Batwing	Tape & Reel ¹
iW1822-11	Cable Comp = 150mV, OTP recovery threshold = 120°C	SO-10 Batwing	Tape & Reel¹

REVISION NOTE: NEW DRAWING DATE: 29-SEP-2015

Note 1: Tape & Reel packing quantity is 2,500/reel. Minimum packing quantity is 2,500.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Fmail

info_pcbg@diasemi.com

North America

Dialog Semiconductor Inc.
Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058