

General Description

DA9080 is a five-channel advanced, configurable, system power management IC (PMIC) with four buck regulators and one LDO. This highly integrated, flexible PMIC is capable of up to 10 A of output current. The output voltage of the regulators can be programmed and sequenced based on the application needs. The DA9080 also integrates an 8-bit ADC, along with several other features, that simplifies overall system design. Dynamic voltage control (DVC), robust protection features, and a dedicated I²C interface that supports multiple modes extend the applicability of this device to a wide range of end applications.

The high-efficiency, fast transient response, and small footprint of the DA9080 lends itself to become the preferred power solution for a host of complex, high-performance applications. The DA9080 is offered in a QFN package.

Key Features

- Power supply voltage (V_{IN}) 4.0 V to 5.5 V
- Four buck converters
- Selectable output voltage range for bucks:
 - □ CH1 Buck: 2.1 V to 3.3 V, 20 mV step
 - □ CH2 Buck: 1.5 V to 2.6 V, 20 mV step
 - $\hfill\Box$ CH3 Buck: 0.9 V to 1.3 V, 5 mV step
 - □ CH4 Buck: 0.8 V to 1.4 V, 5 mV step
- Maximum output current:
 - □ CH1, CH2, and CH3 Buck: 1.5 A
 - □ CH4 Buck: 5.0 A
- Interleaving of switching phases of bucks
- LDO:
 - □ V_{OUT}: 3.3 V, I_{OUT}: 0.2 A (max)

- General purpose ADC:
 - □ 8-bit SAR ADC
 - □ Two external inputs
 - □ Die temperature sense
- Protection functions:
 - Over-current protection
 - □ Over/under-voltage protection
 - ☐ Thermal shutdown protection
- I²C control interface:
 - □ Standard mode (100 kbit/s)
 - □ Fast mode (400 kbit/s)
 - □ Fast mode+ (1 Mbit/s)
- Package: 32 lead QFN, 5.0 mm x 5.0 mm

Applications

- Client and Enterprise SSD modules
- Embedded Computing

■ Integrated Microcontroller Internet of Things

© 2021 Dialog Semiconductor

DSPs or FPGAs with Peripherals

System Diagram

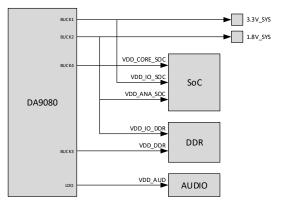


Figure 1: System Diagram

Contents

Ge	neral	Descrip	tion	1	
Ke	y Feat	tures		1	
Аp	plicati	ions		1	
Sy	stem l	Diagran	1	1	
1	Term	s and D	Definitions	5	
2	Refe	rences .		5	
3			am		
4		_			
5			ics		
J	5.1		Ite Maximum Ratings		
	5.2	-			
	5.3		nmended Operating Conditions		
	5.4		al Characteristics		
	5.5		cal Characteristics		
		5.5.1	CH1 Buck Converter Characteristics	10	
		5.5.2	CH2 Buck Converter Characteristics	12	
		5.5.3	CH3 Buck Converter Characteristics	14	
		5.5.4	CH4 Buck Converter Characteristics	16	
		5.5.5	LDO Characteristics	19	
		5.5.6	ADC Characteristics	20	
		5.5.7	Supervision Characteristics	20	
		5.5.8	Quiescent Current Characteristics	21	
		5.5.9	I ² C Characteristics		
		5.5.10	Digital I/O Characteristics	23	
6	Func	tional S	States	24	
7	Sequ	encer		24	
	7.1	Function	onal Description	24	
	7.2	Timing	Diagrams	26	
8	Supe	rvision		29	
	8.1	Input V	/oltage Monitor Flag	29	
	8.2	Fault F	Protection	29	
		8.2.1	Over-Voltage, Under-Voltage, and Over-Current Protection	29	
		8.2.2	Thermal Shutdown		
	8.3	Power	Good Indicator	31	
		8.3.1	Monitoring Groups of Power Good Indicators via PG Pins	31	
9	Buck	Conve	rters	31	
	9.1	Dynam	nic Voltage Control	31	
10	LDO			32	
11	Gene	ral Pur	pose Analog-to-Digital Converter	32	
	11.1	_	rements on Internal Die Temperature Sensors		
	11.2	Measu	rements of External Analog Signals	32	
	11.3	Trigge	ring GPADC Conversions	32	

Datasheet

07-Apr-2021

12	I ² C C	ommunic	ation	32
13	Regis	ter Defin	itions	35
	13.1	Register	Map	35
	13.2	Register	Descriptions	37
		13.2.1	•	37
		13.2.2	•	46
14	Packa	age Infor	'	47
15		_		48
_		•		49
	16.1			50
			•	50
		·	· ·	
	gure			
				6
				or 414118
Fig	ure 6:	FSM Stat	es	24
				26
				by EN Pin
				by DISABLE Bit
				34
				34
Ū	bles		on Diagram	
				7
				8
				9
				9
				10
Tak	ole 7: 0	CH1 Buck	Converter Electrical Characteristi	cs10
				cs12
				cs
				tics
				20
				21
				22
				23
ıat	DIE 1/:	Register	мар	35
Dat	tashee	et	Revision	1.1 07-Apr-2021

DA9080

Table 18: PMC_PGOOD_UV (0x0000)	. 37
Table 19: PMC_CH_OC (0x0001)	
Table 20: PMC_CH_OV (0x0002)	. 39
Table 21: PMC_CH_UV (0x0003)	. 39
Table 22: PMC_ADC_ENABLE (0x0004)	. 40
Table 23: PMC_CH_EN (0x0005)	. 40
Table 24: PMC_VOUT_BUCK1 (0x0007)	. 41
Table 25: PMC_VOUT_BUCK2 (0x0008)	
Table 26: PMC_VOUT_BUCK3 (0x0009)	. 41
Table 27: PMC_VOUT_BUCK4 (0x000A)	
Table 28: PMC_PHASE_INTERLEAVING (0x000B)	. 42
Table 29: PMC_BUCK_SEQ_GRP (0x000C)	. 42
Table 30: PMC_LDO_SEQ_GRP (0x000D)	. 43
Table 31: PMC_PG1 (0x000E)	. 43
Table 32: PMC_PG2 (0x000F)	
Table 33: PMC_DISCHARGE (0x0010)	
Table 34: PMC_TEMP (0x0011)	
Table 35: PMC_ADC0 (0x0012)	
Table 36: PMC_ADC1 (0x0013)	
Table 37: PMC_REVISION_ID (0x0014)	
Table 38: OTP_CONFIG_ID (0x0062)	
Table 39: Ordering Information	. 48
Table 40: Recommended External Components	. 50
Table 41: Capacitor Derating Values	. 50

1 Terms and Definitions

ADC Analog to digital converter
CH<x> Channel <x>, where x = 1 to 4
DVC Dynamic voltage control

ESD Electrostatic discharge **GPADC** General purpose ADC LDO Low dropout regulator MSB Most significant bit OCP Over-current protection OTP One-time programmable OVP Over-voltage protection OVLO Over-voltage lockout

PFM Pulse frequency modulation

PMIC Power management integrated circuit

POR Power-on reset

PWM Pulse width modulation

SAR Successive approximation register

TSD Thermal shutdown

UQFN Ultra-thin quad flat-pack no-lead (package)

UVP Under-voltage protection UVLO Under-voltage lockout

2 References

[1] NXP Semiconductors N.V., UM10204 I²C-Bus Specification and User Manual, Revision 6

3 Block Diagram

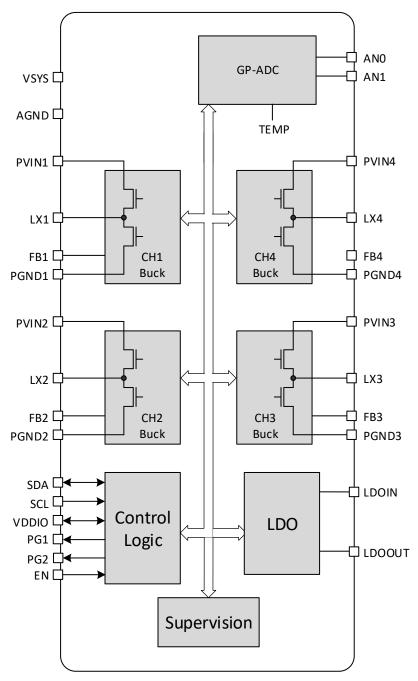


Figure 2: Block Diagram

4 Pinout

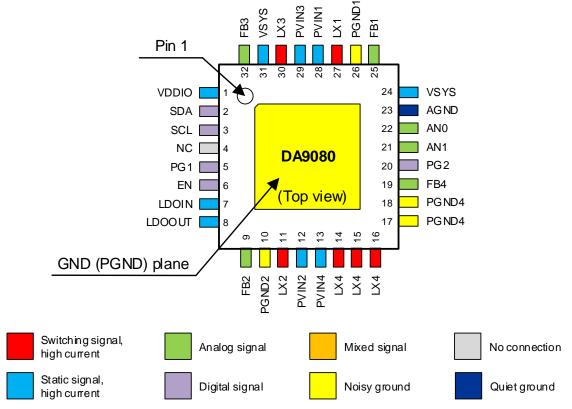


Figure 3: UQFN Pinout Diagram (Top View)

Table 1: Pin Description

Pin#	Pin Name	Type (Table 2)	Description
1	VDDIO	PWR	Supply for I ² C interface
2	SDA	DIOD	I ² C interface data, connect SDA to the logic rail via a pull-up resistor
3	SCL	DI	I ² C interface data, connect SCL to the logic rail via a pull-up resistor
4	NC	DI	Not used, connect to GND
5	PG1	DO	Power good output 1, open drain
6	EN	DI	Chip enable (when pulled low, shuts down entire chip after power down sequencing complete)
7	LDOIN	PWR	LDO input, bypass to ground with a ceramic capacitor
8	LDOOUT	PWR	Output of LDO
9	FB2	AI	CH2 Buck output voltage feedback connection
10	PGND2	GND	CH2 Buck converter power ground
11	LX2	PWR	CH2 Buck converter switching node
12	PVIN2	PWR	CH2 Buck converter input
13	PVIN4	PWR	CH4 Buck converter input
14, 15, 16	LX4	PWR	CH4 Buck converter switching node
17, 18	PGND4	GND	CH4 Buck converter power ground

Pin#	Pin Name	Type (Table 2)	Description
19	FB4	Al	CH4 Buck output voltage feedback connection
20	PG2	DO	Power good output 1, open drain
21	AN1	Al	Input to ADC
22	AN0	Al	Input to ADC
23	AGND	GND	Quiet ground connection, connect to a quiet ground area
24, 31	VSYS	PWR	Filtered from VIN through an RC to provide a clean 5 V supply
25	FB1	Al	CH1 Buck output voltage feedback connection
26	PGND1	GND	CH1 Buck converter power ground
27	LX1	PWR	CH1 Buck converter switching node
28	PVIN1	PWR	CH1 Buck converter input – internally connected to PVIN3
29	PVIN3	PWR	CH3 Buck converter input – internally connected to PVIN1
30	LX3	PWR	CH3 Buck converter switching node
32	FB3	Al	CH3 Buck output voltage feedback connection
PAD	GND	GND	Package central pad, connect to PGND

Table 2: Pin Type Definition

Pin Type	Description	Pin Type	Description
DI	Digital input	Al	Analog input
DO	Digital output	AIO	Analog input/output
DIO	Digital input/output	PWR	Power
DIOD	Digital input/output open drain	GND	Ground

5 Characteristics

5.1 Absolute Maximum Ratings

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Table 3: Absolute Maximum Ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _{STG}	Storage temperature		-60		150	°C
V _{SYS}	System supply voltage	Referenced to AGND	-0.3		6	V
V _{PIN}	All other pins	Referenced to AGND	-0.3		6	V

5.2 Electrostatic Discharge Ratings

Table 4: Electrostatic Discharge Ratings

Parameter	Description	Conditions	Value	Unit
Vesd_HBM	Maximum ESD protection	Human body model (HBM) All exposed pins	2	kV
V _{ESD_CDM}	Maximum ESD protection	Charged device model (CDM)	0.5	kV

5.3 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _A	Operating ambient temperature		-40		85	°C
TJ	Operating junction temperature		-40		125	°C
Vsys	Input supply voltage		4		5.5	V
V _{PIN}	Voltage on all other pins		-0.3		VIN+0. 3	V

5.4 Thermal Characteristics

Table 6: UQFN Ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
R _{O_JA}	Package thermal resistance (Note 1)				24.3	°C/W
P _D	Power dissipation	Derating factor above $T_A = 65$ °C, 41.1 mW/°C $(1/R_{\Theta_J}A)$			2.47	W

Note 1 Obtained from package thermal simulation, JEDEC JESD51-2 still air test environment using 4-layer board at T_A = 65 °C with 36 vias. Influenced by PCB technology and layout.

5.5 Electrical Characteristics

All Min/Max specification limits are guaranteed by design, production testing, and/or statistical characterization and are valid over the full operating temperature range and power supply range unless otherwise noted.

Typical values are based on characterization results at default measurement conditions and are informative only. Default measurement conditions (unless otherwise specified): $V_{IN} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$.

5.5.1 CH1 Buck Converter Characteristics

Table 7: CH1 Buck Converter Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
External Ele	ectrical Conditions					
V _{IN}	Input voltage of power stage		4	5	5.5	V
Соит	Output capacitance, including voltage and temperature coefficient	2 x 47 µF	21		68	μF
ESRCOUT	Output capacitor series resistance	f > 100 kHz		3		mΩ
L	Inductor value, including current and temperature dependence		0.23	0.47	0.61	μH
DCRL	Inductor DC resistance			20	50	mΩ
Electrical Po	erformance					
Гоит	Maximum output current		1500			mA
IQ_AUTO	Quiescent current in Auto mode (no switching)			51		μΑ
f _{SW}	Switching frequency		1.9	2	2.1	MHz
Vouт	Range of output voltage, programmable in 20 mV steps	V _{IN} = 4.0 V to 5.5 V	2.1	3.3	3.3	V

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_stp	Output voltage programable step			20		mV
Vout_ACC_DF	Accuracy of default output voltage	In PWM mode Vout = 3.3 V Iout = 1 A	3.267	3.3	3.33	V
Vout_acc_lin	Static line regulation			0.5		%/V
Vout_acc_ld	Static load regulation	In PWM mode Iout = 1.5 A		0.1		%/A
Vout_acc_ac	Output voltage accuracy, including PWM/PFM ripple and load transient	Vout = 3.3 V Cout = $2 \text{ x } 47 \text{ \muF}$ Load transient 1: from $0.5^*\text{I}_{\text{MAX}}$ to 1_{MAX} in $0.2 \text{ A/}_{\text{\muS}}$ Load transient 2: from 50 mA to $0.5^*\text{I}_{\text{MAX}}$ in $0.2 \text{ A/}_{\text{\muS}}$ $1_{\text{MAX}} = 1.5 \text{ A}$ Vin = 5.0 V Ta = 25 °C	-2		3	%
IPOSLIM	Positive over-current limit threshold		3	4		А
VTHR_OVP_RIS	Over-voltage protection threshold		200	300	400	mV
VTHR_UVP_FA	Under-voltage protection threshold		-400	-300	-200	mV
RDCHG	Discharge resistance for LX node			67		Ω
ton_min	Buck LX minimum on time			20		ns
SR _{SS}	Soft start slew rate			2.5		mV/μs
SR _{SDCHG}	Soft discharge slew rate			2.5		mV/μs

5.5.2 CH2 Buck Converter Characteristics

Table 8: CH2 Buck Converter Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
External Ele	ectrical Conditions					
VIN	Input voltage of power stage		4	5	5.5	V
Соит	Output capacitance, including voltage and temperature coefficient	2 x 47 µF	30		85	μF
ESRCOUT	Output capacitor series resistance	f > 100 kHz		3		mΩ
L	Inductor value, including current and temperature dependence		0.23	0.47	0.61	μH
DCRL	Inductor DC resistance			20	50	mΩ
Electrical Po	erformance					
louт	Maximum output current		1500			mA
I _{Q_AUTO}	Quiescent current in Auto mode (no switching)			51		μΑ
fsw	Switching frequency		1.9	2	2.1	MHz
Vouт	Output voltage range, programmable in 20 mV steps	V _{IN} = 4.0 V to 5.5 V	1.5	1.8	2.6	V
Vout_stp	Output voltage programable step			20		mV
Vout_acc_df	Accuracy of default output voltage	In PWM mode Vout = 1.8 V Iout = 1 A	1.782	1.8	1.818	V
Vout_acc_dc	Output voltage accuracy in PWM mode, including static line and load regulation		-1		1	%
Vout_acc_lin	Static line regulation			0.5		%/V
Vout_acc_ld	Static load regulation	In PWM mode I _{OUT} = 1.5 A		0.1		%/A

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_acc_ac	Output voltage accuracy, including PWM/PFM ripple and load transient	V_{OUT} = 1.8 V C_{OUT} = 2 x 47 μF Load transient 1: from $0.5*I_{MAX}$ to I_{MAX} in 0.2 A/μs Load transient 2: from 50 mA to $0.5*I_{MAX}$ in 0.2 A/μs I_{MAX} = 1.5 A V_{IN} = 5.0 V T_{A} = 25 °C	-2		3	%
IPOSLIM	Positive over-current limit threshold		3	4		А
VTHR_OVP_RIS	Over-voltage protection threshold		200	300	400	mV
VTHR_UVP_FA	Under-voltage protection threshold		-400	-300	-200	mV
RDCHG	Discharge resistance for LX node			67		Ω
ton_min	Buck LX minimum on time			20		ns
SR _{SS}	Soft start slew rate			2.5		mV/μs
SR _{SDCHG}	Soft discharge slew rate			2.5		mV/μs

5.5.3 CH3 Buck Converter Characteristics

Table 9: CH3 Buck Converter Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
External Ele	ctrical Conditions					
VIN	Input voltage of power stage		4	5	5.5	V
Соит	Output capacitance, including voltage and temperature coefficient	3 x 47 µF	70		153	μF
ESR _{COUT}	Output capacitor series resistance	f > 100 kHz		3		mΩ
L	Inductor value, including current and temperature dependence		0.23	0.47	0.61	μH
DCRL	Inductor DC resistance			20	50	mΩ
Electrical Pe	erformance					
lоит	Maximum output current		1500			mA
IQ_AUTO	Quiescent current in Auto mode (no switching)			56		μΑ
fsw	Switching frequency		1.9	2	2.1	MHz
V _{OUT}	Output voltage range	V _{IN} = 4.0 V to 5.5 V	0.9	1.2	1.3	V
Vout_stp	Output voltage programable step			5		mV
Vout_acc_df lt	Accuracy of default output voltage	In PWM mode Vout = 1.2 V Iout = 1 A	1.188	1.2	1.1212	V
Vout_acc_lin	Static line regulation			0.5		%/V
Vout_acc_ld	Static load regulation	In PWM mode		0.1		%/A
Vout_acc_ac	Output voltage accuracy, including PWM/PFM ripple and load transient	$V_{OUT} = 1.2 \text{ V}$ $C_{OUT} = 3 \text{ x } 47 \text{ μF}$ Load transient 1: from 0.5*I _{MAX} to I _{MAX} in 0.2 A/μs Load transient 2: from 50 mA to 0.5*I _{MAX} in 0.2 A/μs I _{MAX} = 1.5 A $V_{IN} = 5.0 \text{ V}$ $T_A = 25 \text{ °C}$	-2		4	%
IPOSLIM	Positive over-current limit threshold		3	4		Α

DA9080

Parameter	Description	Conditions	Min	Тур	Max	Unit
VTHR_OVP_RIS	Over-voltage protection threshold		200	300	400	mV
VTHR_UVP_FA	Under-voltage protection threshold		-400	-300	-200	mV
SR _{DVC}	Output voltage slew rate			10		mV/μs
RDCHG	Discharge resistance for LX node			67		Ω
ton_min	Buck LX minimum on time			20		ns
SR _{SS}	Soft start slew rate			1.25		mV/μs
SR _{SDCHG}	Soft discharge slew rate			1.25		mV/μs

5.5.4 CH4 Buck Converter Characteristics

Table 10: CH4 Buck Converter Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit			
External Ele	External Electrical Conditions								
VIN	Input voltage of power stage		4	5	5.5	V			
Соит	Output capacitance, including voltage and temperature coefficient	4 x 47 μF	94		203	μF			
ESRcout	Output capacitor series resistance	f > 100 kHz		3		mΩ			
L	Inductor value, including current and temperature dependence		0.23	0.47	0.61	μН			
DCRL	Inductor DC resistance			20	50	mΩ			
Electrical Pe	erformance								
Гоит	Maximum output current		5000			mA			
IQ_AUTO	Quiescent current in Auto mode (no switching)			56		μΑ			
fsw	Switching frequency		1.9	2	2.1	MHz			
V _{OUT}	Output voltage range	V _{IN} = 4.0 V to 5.5 V	0.8	1	1.4	V			
Vout_stp	Output voltage programable step			5		mV			
Vout_acc_df	Accuracy of default output voltage	In PWM mode Vout = 1.0 V Iout = 1 A	0.99	1	1.01	V			
Vout_acc_lin	Static line regulation			0.5		%/V			
Vout_acc_ld	Static load regulation	In PWM mode		0.1		%/A			
Vout_acc_ac	Output voltage accuracy, including PWM/PFM ripple and load transient	$V_{OUT} = 1.0 \text{ V}$ $C_{OUT} = 4 \text{ x } 47 \mu\text{F}$ $Load \text{ transient } 1\text{: from }$ $0.5^*\text{I}_{MAX} \text{ to } \text{I}_{MAX} \text{ in } 0.2 \text{ A}/\mu\text{s}$ $Load \text{ transient } 2\text{: from } 50 \text{ mA}$ $\text{to } 0.5^*\text{I}_{MAX} \text{ in } 0.2 \text{ A}/\mu\text{s}$ $\text{I}_{MAX} = 5 \text{ A}$ $V_{IN} = 5.0 \text{ V}$ $T_A = 25 \text{ °C}$	-4		4	%			

Parameter	Description	Conditions	Min	Тур	Max	Unit
Vout_acc_ac dc_full	Output voltage accuracy, including PWM/PFM ripple and load transient in full load	V_{OUT} = 1.0 V C_{OUT} = 4 x 47 μF Load transient: from 50 mA to I_{MAX} in 0.2 A/μs I_{MAX} = 5 A V_{IN} = 5.0 V T_{A} = 25 °C	-5		5	%
IPOSLIM	Positive over-current limit threshold		7	8.5		А
VTHR_OVP_RIS	Over-voltage protection threshold		200	300	400	mV
VTHR_UVP_FA	Under-voltage protection threshold		-400	-300	-200	mV
SR _{DVC}	Output voltage slew rate			10		mV/μs
RDCHG	Discharge resistance for LX node			67		Ω
ton_min	Buck LX minimum on time			20		ns
SRss	Soft start slew rate			1.25		mV/μs
SR _{SDCHG}	Soft discharge slew rate			1.25		mV/μs

5.5.4.1 CH4 Buck Converter Efficiency Characteristics

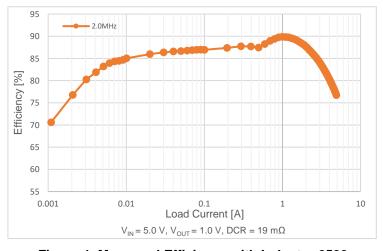


Figure 4: Measured Efficiency with Inductor 2520

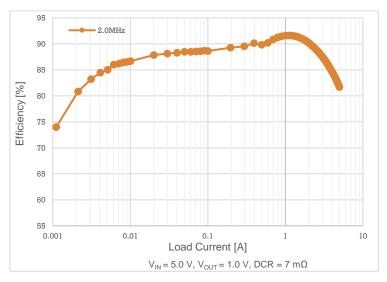


Figure 5: Measured Efficiency with Low DCR Inductor 4141

5.5.5 LDO Characteristics

Table 11: LDO Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
External Ele	ctrical Conditions					
VIN	Input voltage of power stage		4	5	5.5	V
Соит	Output capacitance, including voltage and temperature coefficient		2.3	4.7	6.1	μF
Electrical Pe	erformance					
Гоит	Maximum output current		200			mA
Iq	Quiescent current			3.7		μA
Vout	Output voltage			3.3		V
Vout_ACC_DF	Accuracy of default output voltage	$V_{IN} = 5 \text{ V}$ $I_{OUT} = 10 \text{ mA}$ $T_A = 25 \text{ °C}$	3.267	3.3	3.33	V
Vout_acc_lin	Static line regulation	Iоит = 10 mA		0.1		%/V
Vout_acc_ld	Static load regulation	I _{OUT} = 0 mA to 0.2 A		0.83		%/A
Vout_acc_ac	Output voltage accuracy including load transient	C_{OUT} = 4.7 μ F Transient1: Load = 5 mA to 50 mA @ 0.2 A/ μ s Transient2: Load = 50 mA to 0.1 A @ 0.2 A/ μ s	-30		30	mV
t _{SS}	Soft start time (not DVC controlled)	No load condition C _{OUT} = 4.7 μF		0.56	0.8	ms
tss_тоит	Soft start timeout time			1.3		ms
tldo_off	Time slot allocated for LDO off sequence			1.3		ms
I _{INRUSH}	Inrush current	V _{IN} = 5 V T _A = 25 °C C _{OUT} = 4.7 μF			300	mA
I _{LIM}	Current limit threshold	C _{OUT} = 4.7 μF	200			mA
VTHR_UVP_FA	Under-voltage protection threshold			2.92		V
V _{THR_PG_RISE}	Power-good threshold			3		V
V _{HYS_PG}	Power-good hysteresis			80		mV
Vdropout	Voltage drop from LDOIN to LDOOUT	I _{OUT} = 200 mA T _A = 25 °C C _{OUT} = 4.7 μF		200	400	mV

Datasheet Revision 1.1 07-Apr-2021

Parameter	Description	Conditions	Min	Тур	Max	Unit
RDCHG	Discharge resistance			47		Ω

5.5.6 ADC Characteristics

Table 12: ADC Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Performance								
V _{IN}	AN0/1 Input voltage range		0		5.1	V		
R _{IN}	AN0/1 Input Resistance			1.235		ΜΩ		
М	ADC resolution			8		bit		
Verr_rt	Total conversion error	AN0/1 = 0.05 V to 5.1 V T _A = 25 °C	-20		20	mV		
V _{ERR}	Total conversion error	AN0/1 = 0.05 V to 5.1 V	-40		40	mV		
Vors	0 V input offset error	AN0/1 = 0 V	-40		50	mV		
DNL	Differential non-linearity	AN0/1 = 0.05 V to 5.1 V	-1		1	LSB		
INL	Integral non-linearity	AN0/1 = 0.05 V to 5.1 V	-2		2	LSB		
V _{RES}	Voltage resolution	With respect to AN0/1		20		mV/LS B		
T _{RES_SENSE}	Temperature sensor resolution	Per step		-1.97		°C/ste p		
tacq_tot	Total acquisition Time			100		μs		
lq	Quiescent current	ADC enabled		160		μA		

5.5.7 Supervision Characteristics

Table 13: Supervision Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Performance								
tFALL_DEB	VSYS UVLO/VINGOOD Falling Debounce time			10		μs		
trise_deb	VSYS UVLO/VINGOOD Rising Debounce time			1		ms		
VTHR_UVLO_F	V _{IN} UVLO threshold for V _{IN} falling			3.6		٧		
VTHR_UVLO_H YS	V _{IN} UVLO hysteresis			0.2		V		
V _{THR_RISE}	Input voltage good threshold	Voltage rising		4.6		V		

Datasheet Revision 1.1 07-Apr-2021

Parameter	Description	Conditions	Min	Тур	Max	Unit
VTHR_RISE_AC	Input voltage good threshold accuracy		-2		2	%
V _{THR_HYS}	Input voltage good hysteresis			0.2		V
T _{THR_SHDN}	Thermal shutdown threshold		130	140	150	°C
TTHR_SHDN_H YS	Thermal shutdown hysteresis			15		°C
t _{FLT_DEB}	Fault detect debounce time	OVP and UVP		10		μs
tHICCUP	Hiccup restart delay			64		ms
tpg	Individual supply PG delay			2		ms
tPG1_2	PG1 and PG2 pins PG delay			10		ms

5.5.8 Quiescent Current Characteristics

Table 14: Quiescent Current Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit		
Electrical Performance								
Ivsys_shdn	Total current of VSYS pin	SHUTDOWN mode Vsys = 5 V VDDIO = 0 V TA = -40 °C to 85 °C EN = L or FORCE_DISABLE = H CH <x> = All OFF</x>		10	30	μА		
IPVINX_SHDN	Total current from PVIN1, PVIN2, PVIN3, and PVIN4 pins	SHUTDOWN mode Vsys = 5 V VDDIO = 0 V TA = -40 °C to 85 °C EN = L or FORCE_DISABLE = H CH <x> = All OFF</x>		0	10	μА		
ILDOIN_SHDN	Total current of LDOIN pin	SHUTDOWN mode Vsys = 5 V VDDIO = 0 V TA = -40 °C to 85 °C EN = L or FORCE_DISABLE = H CH <x> = All OFF</x>		0	1	μА		

Parameter	Description	Conditions	Min	Тур	Max	Unit
Ivsys_op	Total current of VSYS pin	OPERATING mode EN = H and FORCE_DISABLE = L CH <x> = All ON Buck: ON with no switching and no load LDO: ON with no load ADC: ON IO: Non I²C communication</x>		500	600	μΑ
IPVINX_OP	Total current from PVIN1, PVIN2, PVIN3, and PVIN4 pins	OPERATING mode EN = H and FORCE_DISABLE = L CH <x> = All ON Buck: ON with no switching and no load</x>		0	10	μΑ
Ivddio	Total current from VDDIO pin	No I ² C communication V _{SYS} = 5 V V _{DDIO} = 3.3 V SCL = SDA = H		0.16	1	μА
ILDOIN_OP	Total current of LDOIN pin	OPERATING mode EN = H and FORCE_DISABLE = L CH <x> = All ON LDO: ON with no load</x>		2.7	10	μА

5.5.9 I²C Characteristics

Table 15: I2C Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit			
Electrical Performance									
Standard/Fa	Standard/Fast/Fast+ Mode								
t _{BUS}	Bus free time between a STOP and START condition		0.5			μs			
C _{BUS}	Bus line capacitive load				150	pF			
fscL	SCL clock frequency				1000	kHz			
tLO_SCL	SCL low time		0.5			μs			
t _{HI_SCL}	SCL high time		0.26			μs			
t _{RISE}	SCL and SDA rise time. Requirement for input.				1000	ns			
t _{FALL}	SCL and SDA fall time. Requirement for input.				300	ns			

Parameter	Description	Conditions	Min	Тур	Max	Unit
tsetup_start	Start condition setup time		0.26			μs
thold_start	Start condition hold time		0.26			μs
t _{SETUP_STOP}	Stop condition setup time		0.26			μs
t _{DATA}	Data valid time				0.45	μs
tdata_ack	Data valid acknowledge time				0.45	μs
t _{SETUP_DATA}	Data setup time		50			ns
thold_data	Data hold time		0			ns
tspike	Spike suppression pulse width		0		50	ns

5.5.10 Digital I/O Characteristics

Table 16: Digital I/O Electrical Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit			
Electrical Performance									
VIH_SCL_SDA	Input high voltage, SCL, SDA		1.2			V			
VIL_SCL_SDA	Input low voltage, SCL, SDA				0.4	V			
Vol_PG1	PG1 output low voltage, POR	I _{OUT} = 3 mA			0.4	V			
V _{OL_PG2}	PG2 output low voltage, POR	I _{OUT} = 3 mA			0.4	V			
Vol_sda	Output low voltage, SDA	I _{OUT} = 3 mA			0.4	V			
V _{IH_EN}	Input high voltage, CH1SEL		1.2			V			
VIL_EN	Input low voltage, CH1SEL				0.4	V			
tenh_deb	EN Pin rising debounce time			100		ms			
tenl_deb	EN Pin falling debounce time			10		μs			

6 Functional States

DA9080 functional states are shown in Figure 6.

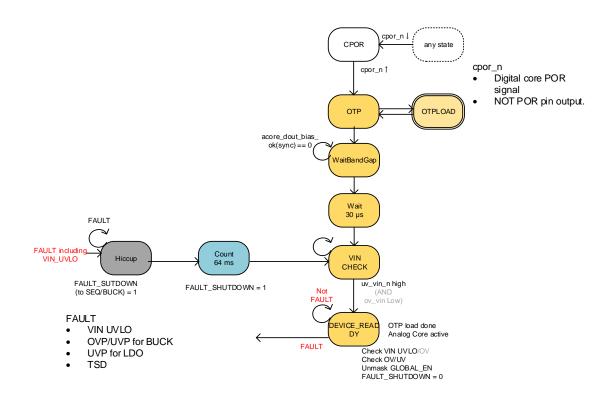


Figure 6: FSM States

7 Sequencer

7.1 Functional Description

DA9080 includes a sequencer to control the power-up and power-down behavior. Any number of voltage supplies (bucks and LDO) can be grouped and assigned to a sequencer slot; for example, PVIN1 and PVIN2 may both be assigned to slot one. Four sequencer slots are provided.

When the sequencer starts all supplies in slot one are enabled. The sequencer then waits until all the enabled supplies have started correctly as confirmed by the corresponding power-good indicator (see Section 8.3). A blanking time is applied during supply startup to prevent fault conditions being registered. A delay, t_{PG} , is applied between a supply starting correctly and that supply's power-good (PG) indicator being set.

Once all the power-good indicators have been set in slot one, the sequencer moves to slot two and repeat the process. When all slots are completed, the power-up sequence is finished.

If no supplies have been assigned to a slot then the slot completes immediately and the sequencer moves on to the next slot.

For power-down the sequencer is run with reverse slot order. Supplies assigned to slot four are disabled first. When disabled, each buck ramps down the output voltage to the minimum code and then discharges using the internal pull-down resistor. As the LDO is unable to actively discharge its output voltage, when disabled, the LDO uses an internal pull-down resistor to discharge the output voltage.

DA9080

High Current, Highly Configurable System PMIC with Four Bucks and One LDO

Once the output voltage discharge ramp is finished, and after a suitable delay, the slot is completed and the sequencer moves to slot three and repeats the process. When all slots are complete, the power-down sequence is finished.

The startup and shutdown sequencers may be triggered by register write. The FORCE_DISABLE register bit will shut down the regulators if written high whilst the chip is enabled. When using this register care should be taken that the regulators are not also disabled by writing their individual enable registers: The FORCE DISABLE register is located in the same register bank as the individual regulator enable bits (EN1/2/3/4/L) If the regulator enables are set low when FORCE_DISABLE is used then the regulators will not restart when FORCE_DISABLE is cleared.

7.2 Timing Diagrams

The following diagrams show examples of chip power-up and power-down.

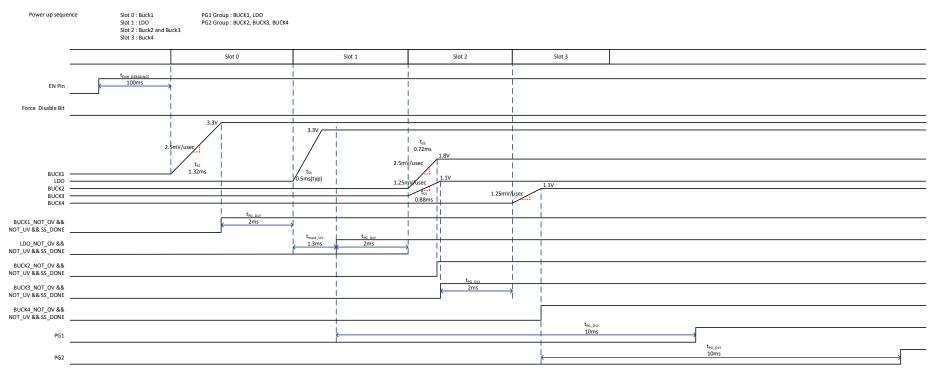


Figure 7: Timing Diagram Example for Power-Up

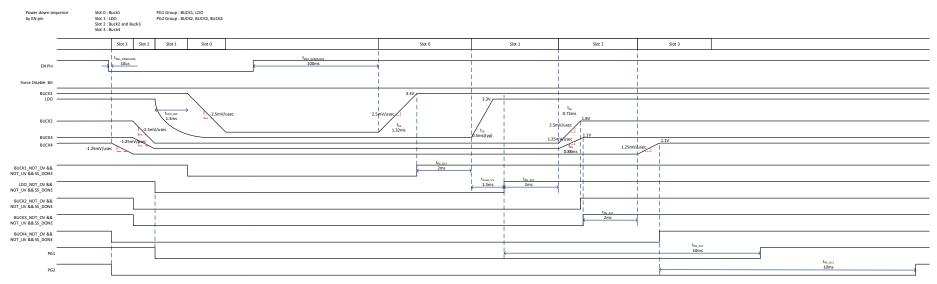


Figure 8: Timing Diagram Example for Power-Down by EN Pin

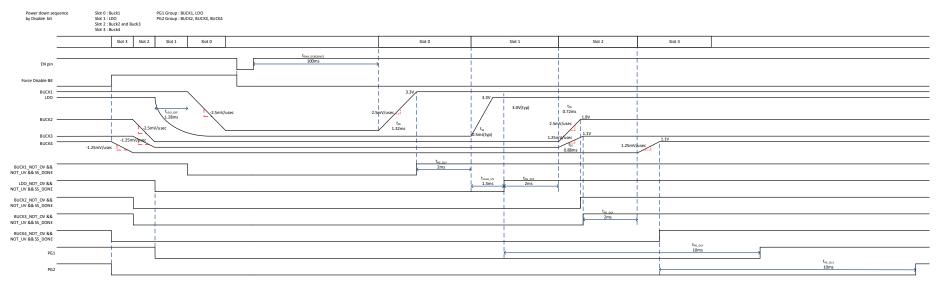


Figure 9: Timing Diagram Example for Power-Down by DISABLE Bit

8 Supervision

8.1 Input Voltage Monitor Flag

The voltage at the VSYS pin is continually monitored. The status of this pin is reported in a 2-bit register field. One bit provides the current status of this pin while the other bit is sticky, being set when the voltage on the VSYS pin transitions below 4.4 V. The input voltage monitor comparator has a 4.6 V rise, 4.4 V fall, and 0.2 V hysteresis. The host can poll these two bits to check the status of this pin. The sticky bit is cleared by writing 1 to it.

8.2 Fault Protection

8.2.1 Over-Voltage, Under-Voltage, and Over-Current Protection

Each buck has over-voltage (OV), under-voltage (UV), and over-current (OC) fault protection.

When the buck output drops below V_{THR_UVP_FALL}, the BUCK<x>_UV_STAT bit in the PMC_CH_UV register is set to 0x1. When the buck output increases above V_{THR_OVP_RISE} the BUCK<x>_OV_STAT bit in the PMC_CH_OV register is set to 0x1.

Each of the bucks has current limit, I_{POSLIM}, with programmable thresholds. When the current limit is met, the BUCK<x>_OC_STAT bit in the PMC_CH_OC register is set to 0x1.

The LDO has under-voltage (UV) and over-current (OC) fault protection. When either of these conditions is met, status bits are set to 0x1 in dedicated registers, in a similar way to the bucks. A supply voltage fault condition (UV or OV), on any supply, causes an immediate power down and all supplies are disabled. The sequencer will not run and the supplies will not perform a controlled rampdown of the output voltage.

A re-start is initiated, after a blanking time, with a hiccup behavior. The outputs are discharged by the internal pull-down resistors prior to being enabled again.

The UV, OV and OC register bits are sticky and remain set through a hiccup cycle, see Figure 10. The register bits are only cleared on a register write of 1.

8.2.2 Thermal Shutdown

DA9080 also has a thermal shutdown (TSD) function. When the die temperature goes above 140 °C (typ) (T_{THR_SHDN}), all the regulator outputs and the GPADC are immediately shutdown. The TSD event is recorded in a register OVERTEMP_EVENT bit<7> in PMC_CH_OC (0x01).

When the die temperature goes below 125 °C(typ), the start-up sequence is restarted.

Note that the I^2C communication is halted during TSD, the OVERTEMP_EVENT bit cannot be read back at this time. The host should check the OVERTEMP_EVENT bit after the device has recovered from TSD. The OVERTEMP_EVENT bit is sticky and is cleared by over-writing the bit with 1.

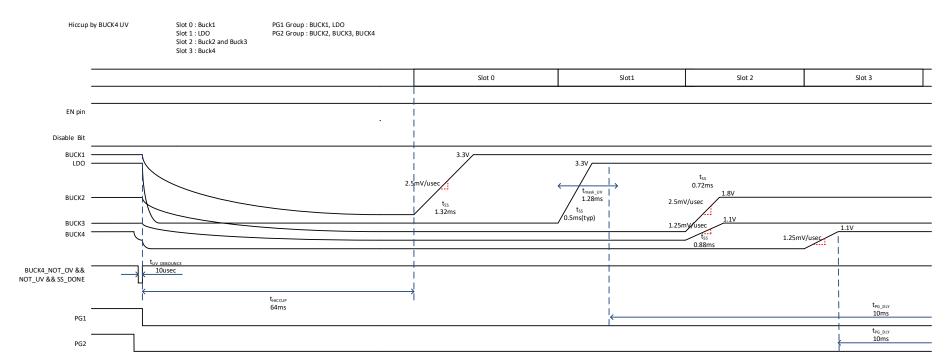


Figure 10: Timing Diagram Example for a Hiccup Cycle

8.3 Power Good Indicator

Each supply has a power-good (PG) indicator that is set once the supply has been enabled and has started correctly. After the supply becomes valid there is a delay, t_{PG}, before the PG indicator is set. For the bucks the PG indicator is the logical NOR of the UV and OV fault indicators.

During soft start the PG indicator is held low while the supply output is being ramped. When this ramp is completed, and assuming no fault conditions exist, the PG indicator is set (after t_{PG}). If a fault exists once the soft-start voltage ramp is completed a fault will be registered and all supplies are immediately disabled.

For the LDO there is a soft-start timeout period, tss_TIMEOUT, during which UV fault detection is blanked. After this period the LDO output is monitored for fault conditions.

During a dynamic voltage ramp the PG detection is blanked and held high. After the ramp has completed the blanking is removed and the PG status is re-evaluated.

The PG indicators are cleared immediately in the event of a fault.

8.3.1 Monitoring Groups of Power Good Indicators via PG Pins

The output pins PG1 and PG2 are used to monitor the status of groups of PG indicators. Each pin's group is determined by setting a register bit associated with an individual supply's PG indicator. A PG pin is only set when all the PG indicators assigned to its group are set.

If no supplies are assigned to a PG pin then the pin is high impedance.

A delay is applied between the condition for the PG pin to be set and the PG1 or PG2 pin going high. This delay is in addition to the delay added to the individual supply PG indicators.

The status of any PG indicator can be read back via I2C.

9 Buck Converters

DA9080 has four channels of switching buck converters, CH1 Buck to CH4 Buck. Each of the bucks has an I²C programable voltage register, which defines the output voltage. The channels are phase shifted by 0°, 90°, 180°, or 270°.

When a buck is enabled, its output voltage is controlled by a soft-start, output voltage ramp. When the buck output reaches the target voltage, the power-good indicator status bit is set.

If a buck is enabled while the output capacitor is already charged (at a non-zero voltage) the buck will not discharge the output during startup. The buck will not draw negative current while the soft-start target voltage is lower than the actual output voltage and the voltage will then rise smoothly once the soft-start voltage ramp exceeds the actual output voltage.

After a buck is disabled, the output voltage is completely discharged by the integrated pull-down resistor before a new start-up is executed.

A pull-down resistor for each channel is enabled when the channel is disabled. This feature can be disabled by setting dedicated register bits, each pull-down can be disabled individually per-buck.

9.1 Dynamic Voltage Control

CH1 and CH2 Buck converters do not support dynamic voltage control (DVC), their output voltage is set by OTP register setting.

CH3 and CH4 Buck converters support DVC, with the following features:

- When the value of the target voltage changes, the output voltage updates to the new target value.
- The DVC controller operates in pulse width modulation (PWM) mode (Note 1) with synchronous rectification. During DVC operation the power-good indicator is available.

Note 1 At higher loads the bucks will operate in PWM at a fixed frequency. To support light loads the bucks will operate in pulse frequency modulation (PFM) mode. The bucks move between PFM and PWM automatically depending on the load requirements.

10 LDO

DA9080 has one LDO which provides a fixed, regulated 3.3 V output voltage.

The LDO has soft-start function and its output voltage gradually increases when the LDO is enabled.

A pull-down resistor for the LDO output is enabled when the LDO is disabled. This feature can be disabled by setting dedicated register bits.

11 General Purpose Analog-to-Digital Converter

DA9080 features an 8-bit successive approximation register (SAR) analog-to-digital converter (ADC).

The GPADC allows measurement of:

- die temperature
- external voltages (AN0 and AN1)

The GPADC consists of an analog-to-digital converter (ADC) with 8-bit resolution, combined with an analog input multiplexer to select a variety of channels. The input MUX selects from the inputs and presents the channel to be measured to the ADC input.

11.1 Measurements on Internal Die Temperature Sensors

A die temperature sensor is placed near known heat sources on the die for managing power. The sensor consists of a bipolar junction diode which is fed by a current source. A measurement on this channel produces a reading of the voltage across the diode.

When using the ADC to measure the die temperature sensor, the output ADC code can be converted into $^{\circ}$ C using the formula: $T(^{\circ}$ C) = -1.97 * CODE + 349.

11.2 Measurements of External Analog Signals

External analog signals can be measured using the GPADC. The pins AN0 and AN1 are provided as inputs for signals to be measured. Signals to be measured should be in the range 0 V to 5.1 V. In the case where the supply voltage, V_{SYS}, is lower than 5.1 V this does not limit the range of the GPADC and signals up to 5.1 V can still be measured.

Signals from ANO and AN1 are directly input to the GPADC during conversion and so should not vary during conversion period. The GPADC assumes signals are DC for the duration of the conversion.

When using the ADC to measure the external signals, the output ADC code can be converted into a voltage by using the formula: ANO/1 = CODE * 20 mV + 10 mV.

11.3 Triggering GPADC Conversions

GPADC operations are enabled by setting ADC_EN = 0x1. The ADC automatically converts all inputs sequentially, an ADC read command automatically updates all ADC input values. The 8-bit result is stored in the PMC_TEMP, PMC_ADC0, and PMC_ADC1 registers.

12 I²C Communication

DA9080 includes an I²C-compatible 2-wire serial interface to access the internal registers. Through the I²C interface, the host processor controls each channel and reads back system status. The DA9080 only operates as a slave device.

The host processor provides the serial clock at the SCL pin. DA9080 supports I²C Standard-mode at 100 kHz, Fast-mode at 400 kHz, and Fast-mode Plus at 1000 kHz.

DA9080 SLAVE address is 0x1B.

The I²C data pin, SDA, is open drain which allows multiple devices to share a communication line.

All transmissions begin with a START condition issued from the Master while the bus is in an IDLE state (the bus is free). The START condition is initiated by a high to low transition on SDA while SCL is high. Alternately, a STOP condition is indicated by a low to high transition on SDA while SCL is high, see Figure 11.

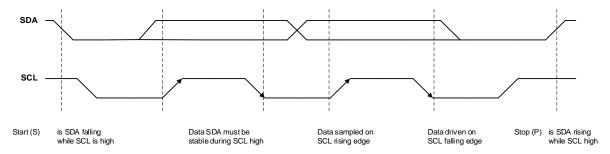


Figure 11: I²C Start (S) and Stop (P)

The I²C interface uses a two-byte serial protocol containing one byte for address and one byte for data. The data and address are transferred with MSB transmitted first for both read and write operations.

DA9080 monitors the serial bus for a valid SLAVE address when the interface is enabled. When it receives its own slave address, DA9080 immediately gives an Acknowledge signal to the host by pulling SDA low during the following clock cycle. A Not Acknowledge signal is given by a logic 1, not pulling down the SDA line.

A single-byte write is shown in Figure 12. Here the slave address is followed by a write bit (low), the register address, and the write data. Finally, the transaction is terminated with a STOP.

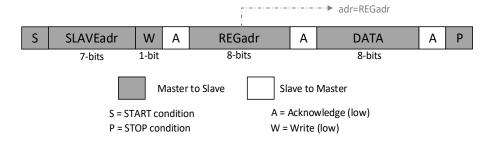


Figure 12: Single Write Command

DA9080 also supports multiple byte writes, shown in Figure 13. By not sending the STOP command, data is written to consecutive addresses.

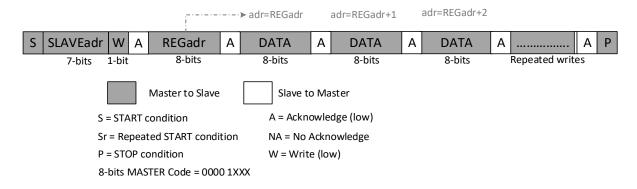


Figure 13: Consecutive Write Command

The data read protocol differs from the write protocol. A read does not have a register address immediately preceding it. To read from a specific address, the register address is given by using a write command followed by a Repeated START. A single-byte read is shown in Figure 14. A Repeated START is followed by the slave address and a read bit. After the read data is returned to the host, the host then responds with a Not Acknowledge and a STOP.

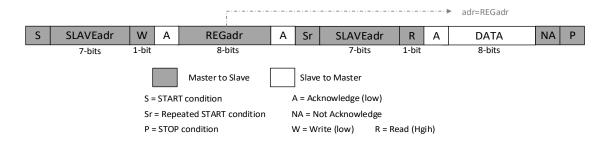


Figure 14: Single Read Command

The DA9080 also supports a multiple byte read protocol. If the host responds to the returned data with an Acknowledge rather than Not Acknowledge and STOP, data will be read from sequential addresses until a Not Acknowledge and STOP command is given, as shown in Figure 15. If a read address is given with a write and Repeated START, consecutive addresses are read from the write address.

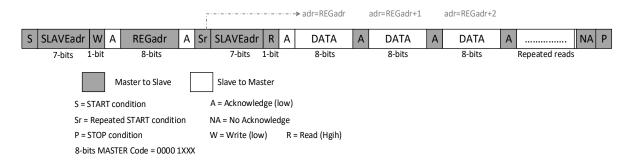


Figure 15: Consecutive Read Command

13 Register Definitions

13.1 Register Map

Table 17: Register Map

Addr	Register	7	6	5	4	3	2	1	0	Rese t
Function	nal Registers		<u> </u>							
PMIC Fu	IIC Function Registers									
0x000 0	PMC_PGOOD_UV	Reserved 0	UV_FLA G	UV_CURRENT	BUCK4_PG_STAT	BUCK3_PG_STAT	BUCK2_PG_STAT	BUCK1_PG_STAT	LDO_PG_STAT	0x00
0x000 1	PMC_CH_OC	OVERTEMP_EVE NT	Reserve d	Reserved	BUCK4_OC_EVEN T	BUCK3_OC_EVEN T	BUCK2_OC_EVEN T	BUCK1_OC_EVEN T	LDO_OC_EVEN T	0x00
0x000 2	PMC_CH_OV	Reserved	Reserve d	Reserved	BUCK4_OV_EVEN T	BUCK3_OV_EVEN T	BUCK2_OV_EVEN T	BUCK1_OV_EVEN T	Reserved	0x00
0x000 3	PMC_CH_UV	Reserved	Reserve d	Reserved	BUCK4_UV_EVEN T	BUCK3_UV_EVEN T	BUCK2_UV_EVEN T	BUCK1_UV_EVEN T	LDO_UV_EVEN T	0x00
0x000 4	PMC_ADC_ENABLE	Reserved	Reserve d	Reserved	Reserved	Reserved	Reserved	Reserved	ADC_EN	0x01
0x000 5	PMC_CH_EN	Reserved	Reserve d	FORCE_DISAB LE	EN4	EN3	EN2	EN1	ENL	0x1F
0x000 7	PMC_VOUT_BUCK1	VBUCK1<7:0>								0x3C
0x000 8	PMC_VOUT_BUCK2	VBUCK2<7:0>								0x0F
0x000 9	PMC_VOUT_BUCK3	VBUCK3<7:0>								0x3C
0x000 A	PMC_VOUT_BUCK4	VBUCK4<7:0>	VBUCK4<7:0>							
0x000 B	PMC_PHASE_INTERLEAVI NG	BUCK4_PHASE<1:0	BUCK4_PHASE<1:0> BUCK3_PHASE<1:0> BUCK2_PHASE<1:0> BUCK1_PHASE<1:0>						>	0xE4
0x000 C	PMC_BUCK_SEQ_GRP	BUCK4_GRP<1:0>		BUCK3_GRP<1:0	>	BUCK2_GRP<1:0> BUCK1_GRP<1:0>				0xF9

DA9080

Addr	Register	7	6	5	4	3	2	1	0	Rese t
0x000 D	PMC_LDO_SEQ_GRP	Reserved	Reserve d	Reserved	Reserved	Reserved	Reserved	LDO_GRP<1:0>	0x00	
0x000 E	PMC_PG1	Reserved	Reserve d	Reserved	BUCK4_PG1	BUCK3_PG1	BUCK2_PG1	BUCK1_PG1	LDO_PG1	0x04
0x000 F	PMC_PG2	Reserved	Reserve d	Reserved	BUCK4_PG2	BUCK3_PG2	BUCK2_PG2	BUCK1_PG2	LDO_PG2	0x1A
0x001 0	PMC_DISCHARGE	Reserved	Reserve d	Reserved	BUCK4_DISCHAR GE	BUCK3_DISCHAR GE	BUCK2_DISCHAR GE	BUCK1_DISCHAR GE	LDO_DISCHAR GE	0x1F
0x001 1	PMC_TEMP	TEMP<7:0>								
0x001 2	PMC_ADC0	ADC0<7:0>	ADC0<7:0>							
0x001 3	PMC_ADC1	ADC1<7:0>								
0x001 4	PMC_REVISION_ID	REVISION_ID<7:0>								0xE9
OTP Cor	OTP Control									
Chip ID	Chip ID									
0x006 2										0x00

13.2 Register Descriptions

13.2.1 PMIC Function Registers

Table 18: PMC_PGOOD_UV (0x0000)

Bit	Туре	Field Name	Descript	Description		
			after hav	Indicates the VSYS voltage once fell below 4.4 V after having once risen above 4.6 V. This is a sticky flag. Clear by a POR or writing 1 via I2C.		
[6]	RW1C	UV_FLAG	Value	Description	0x0	
			0x0	No UV_EVENT has happened		
			0x1	UV_EVENT has happened		
			Indicates	current VSYS under-voltage (UV) status.		
		LIV OURRENT	Value	Description		
[5]	R	UV_CURRENT	0x0	Not in UV state. Current VSYS > 4.6 V	0x0	
			0x1	In UV state. Current VSYS < 4.4 V		
			CH4 Buc	k power good (PG) status.		
			Value	Description		
[4]	R	BUCK4_PG_STAT	0x0	CH4 Buck output voltage is more than +/- 300 mV of target voltage	0x0	
			0x1	CH4 Buck output voltage is within +/-300 mV of target voltage		
		R BUCK3_PG_STAT	CH3 Buc	k PG status.		
			Value	Description		
[3]	R		0x0	CH3 Buck output voltage is more than +/- 300 mV of target voltage	0x0	
			0x1	CH3 Buck output voltage is within +/-300 mV of target voltage		
			CH2 Buc	k PG status.		
			Value	Description		
[2]	R	BUCK2_PG_STAT	0x0	CH2 Buck output voltage is more than +/- 300 mV of target voltage	0x0	
			0x1	CH2 Buck output voltage is within +/-300 mV of target voltage		
			CH1 Buc	k PG status.		
			Value	Description		
[1]	R	BUCK1_PG_STAT	0x0	CH1 Buck output voltage is more than +/- 300 mV of target voltage	0x0	
			0x1	CH1 Buck output voltage is within +/-300 mV of target voltage		

Bit	Туре	Field Name	Descript	Description	
	LDO PG status.				
			Value	Description	
[0]	R	LDO_PG_STAT	0x0	LDO output voltage is not higher than 3.0 V	0x0
		0x1	LDO output voltage is higher than 3.0 V		

Table 19: PMC_CH_OC (0x0001)

Bit	Туре	Field Name	Description		Reset
			Indicates POR or v	an over-temperature event. Clear by a vriting 1 via I2C.	
[7]	RW1C	OVERTEMP_EVENT	Value	Description	0x0
		_	0x0	No over-temperature event.	
			0x1	Over-temperature event.	
				a CH4 Buck over-current (OC) event. a POR or writing 1 via I2C.	
[4]	RW1C	BUCK4_OC_EVENT	Value	Description	0x0
			0x0	CH4 Buck no OC event	
			0x1	CH Buck OC event	
				a CH3 Buck over-current event. Clear by r writing 1 via I2C.	
[3]	RW1C	BUCK3_OC_EVENT	Value	Description	0x0
			0x0	CH3 Buck no OC event	
			0x1	CH3 Buck OC event	
		BUCK2 OC EVENT		a CH2 Buck over-current event. Clear by r writing 1 via I2C.	
[2]	RW1C		Value	Description	0x0
			0x0	CH2 Buck no OC event	
			0x1	CH2 Buck OC event	
			Indicates a POR or	a CH1 Buck over-current event. Clear by r writing 1 via I2C.	
[1]	RW1C	BUCK1_OC_EVENT	Value	Description	0x0
			0x0	CH1 Buck no OC event	
			0x1	CH1 Buck OC event	
		LDO OC EVENT		an LDO over-current event. Clear by a vriting 1 via I2C.	
[0]	RW1C		Value	Description	0x0
			0x0	LDO no OC event	
			0x1	LDO OC event	

Table 20: PMC_CH_OV (0x0002)

Bit	Туре	Field Name	Descript	Description	
				a CH4 Buck over-voltage (OV) event. a POR or writing 1 via I2C.	
[4]	RW1C	BUCK4_OV_EVENT	Value	Description	0x0
			0x0	CH4 Buck no OV event	
			0x1	CH4 Buck OV event	
				a CH3 Buck over-voltage event. Clear by r writing 1 via I2C.	
[3]	RW1C	BUCK3_OV_EVENT	Value	Description	0x0
			0x0	CH3 Buck no OV event	
			0x1	CH3 Buck OV event	
		RW1C BUCK2 OV EVENT	Indicates a CH2 Buck over-voltage event. Clear by a POR or writing 1 via I2C.		
[2]	RW1C		Value	Description	0x0
			0x0	CH2 Buck no OV event	
			0x1	CH2 Buck OV event	
		BUCK1_OV_EVENT		a CH1 Buck over-voltage event. Clear by r writing 1 via I2C.	
[1]	RW1C		Value	Description	0x0
			0x0	CH1 Buck no OV event	
			0x1	CH1 Buck OV event	

Table 21: PMC_CH_UV (0x0003)

Bit	Туре	Field Name	Descript	ion	Reset
				a CH4 Buck under-voltage (UV) event. a POR or writing 1 via I2C.	
[4]	RW1C	BUCK4_UV_EVENT	Value	Description	0x0
			0x0	CH4 Buck no UV event	
			0x1	CH4 Buck UV event	
	RW1C	BUCK3_UV_EVENT		a CH3 Buck under-voltage event. Clear R or writing 1 via I2C.	
[3]			Value	Description	0x0
			0x0	CH3 Buck no UV event	
			0x1	CH3 Buck UV event	
	RW1C	BUCK2_UV_EVENT		a CH2 Buck under-voltage event. Clear R or writing 1 via I2C.	
[2]			Value	Description	0x0
			0x0	CH2 Buck no UV event	
			0x1	CH2 Buck UV event	

Bit	Туре	Field Name	Descript	ion	Reset
[1] RW1C				a CH1 Buck under-voltage event. Clear R or writing 1 via I2C.	
	BUCK1_UV_EVENT	Value	Description	0x0	
			0x0	CH1 Buck no UV event	
			0x1	CH1 Buck UV event	
			Indicates writing 1	an LDO UV event. Clear by a POR or via I2C.	
[0]	RW1C	LDO_UV_EVENT	Value	Description	0x0
			0x0	LDO no UV event	
			0x1	LDO UV event	

Table 22: PMC_ADC_ENABLE (0x0004)

Bit	Туре	Field Name	Descript	Description	
			ADC ena	ADC enable.	
	450 EN	Value	Description	04	
[0]	RW	ADC_EN	0x0	ADC disabled	0x1
			0x1	ADC enabled	

Table 23: PMC_CH_EN (0x0005)

Bit	Туре	Field Name	Descript	Description	
			shutdowr	When this bit is set to 1 and the EN pin is high, a shutdown sequence starts. This bit is automatically cleared to 0 when the external EN pin is toggled low.	
[5]	RW	FORCE_DISABLE	Value	Description	0x0
			0x0	This function is off	
			0x1	This function is on	
			CH4 Buc	k enable.	
F.41		EN4	Value	Description	0x1
[4]	RW		0x0	CH4 Buck disabled	
			0x1	CH4 Buck enabled	
			CH3 Buc	CH3 Buck enable.	
[0]	RW	EN3	Value	Description	0x1
[3]	KVV	EN3	0x0	CH3 Buck disabled	UX1
			0x1	CH3 Buck enabled	
			CH2 Buc	k enable.	
[0]	RW		Value	Description	0x1
[2]	KVV	EN2	0x0	CH2 Buck disabled	
			0x1	CH2 Buck enabled	

Bit	Туре	Field Name	Descript	Description	
			CH1 Buc	k enable.	
[4]	[1] RW E1	EN4	Value	Description	04
[1]			0x0	CH1 Buck disabled	0x1
			0x1	CH1 Buck enabled	
			LDO ena	ble.	
[0]			Value	Description	04
[0] RW	ENL	0x0	LDO disabled	0x1	
		0x1	LDO enabled		

Table 24: PMC_VOUT_BUCK1 (0x0007)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	VBUCK1	VBUCK1[7:0] CH1 Buck output voltage setting. 0x00 = 2.1 V, 0x3C = 3.3 V(Default), 20 mV resolution. Although this register will accept any value in its range of 0x00 to 0xFF, the output voltage accuracy is not guaranteed outside the range stated in the electrical table.	0x3C

Table 25: PMC_VOUT_BUCK2 (0x0008)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	VBUCK2	VBUCK2[7:0] CH2 Buck output voltage setting. 0x00 = 1.5 V, 0x0F = 1.8 V(Default), 0x37 = 2.6 V, 20 mV resolution. Although this register will accept any value in its range of 0x00 to 0xFF, the output voltage accuracy is not guaranteed outside the range stated in the electrical table.	0x0F

Table 26: PMC_VOUT_BUCK3 (0x0009)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	VBUCK3	VBUCK3[7:0] CH3 Buck output voltage setting. 0x00 = 0.9 V, 0x3C = 1.2 V (Default), 0x50 = 1.3 V, 5 mV resolution. Although this register will accept any value in its range of 0x00 to 0xFF, the output voltage accuracy is not guaranteed outside the range stated in the electrical table.	0x3C

Table 27: PMC_VOUT_BUCK4 (0x000A)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	VBUCK4	VBUCK4[7:0] CH4 Buck output voltage setting. 0x00 = 0.8 V, 0x28 = 1.0 V (Default), 0 x 78 = 1.4 V, 5 mV resolution. Although this register will accept any value in its range of 0x00 to 0xFF, the output voltage accuracy is not guaranteed outside the range stated in the electrical table.	0x28

Table 28: PMC_PHASE_INTERLEAVING (0x000B)

Bit	Туре	Field Name	Descript	Description		
			CH4 Buc	CH4 Buck phase interleave.		
			Value	Description		
[7.0]	D	DUCKA DUACE	0x0	CH4 Buck phase is 0 degrees	0.0	
[7:6]	R	BUCK4_PHASE	0x1	CH4 Buck phase is 90 degrees	0x3	
			0x2	CH4 Buck phase is 180 degrees		
			0x3	CH4 Buck phase is 270 degrees		
			CH3 Buc	ck phase interleave.		
			Value	Description		
[5:4]	R	BUCK3_PHASE	0x0	CH3 Buck phase is 0 degrees	0x2	
[5.4]	K	BUCK3_PHASE	0x1	CH3 Buck phase is 90 degrees	UX2	
			0x2	CH3 Buck phase is 180 degrees		
			0x3	CH3 Buck phase is 270 degrees		
			CH2 Bud	ck phase interleave.		
			Value	Description		
[3:2]	R	BUCK2_PHASE	0x0	CH2 Buck phase is 0 degrees	0x1	
[3.2]	K	BOCKZ_FTIASE	0x1	CH2 Buck phase is 90 degrees	UXI	
			0x2	CH2 Buck phase is 180 degrees		
			0x3	CH2 Buck phase is 270 degrees		
			BUCK1	phase interleave.		
			Value	Description		
[1:0]	R	BUCK1_PHASE	0x0	CH1 Buck phase is 0 degrees	0x0	
[1:0]		DOOKI_I HAGE	0x1	CH1 Buck phase is 90 degrees		
			0x2	CH1 Buck phase is 180 degrees		
			0x3	CH1 Buck phase is 270 degrees		

Table 29: PMC_BUCK_SEQ_GRP (0x000C)

Bit	Туре	Field Name	Description		Reset
		Assign CH4 Buck to a power-up / power-down sequencing slot.			
			Value	Description	
[7:6]	[7:6] RW I	BUCK4_GRP	0x0	CH4 Buck is assigned to slot 1	0x3
			0x1	CH4 Buck is assigned to slot 2	
		0x2	CH4 Buck is assigned to slot 3		
		0x3	CH4 Buck is assigned to slot 4		

Bit	Туре	Field Name	Descript	tion	Reset	
			_	Assign CH3 Buck to a power-up / power-down sequencing slot.		
			Value	Description		
[5:4]	RW	BUCK3_GRP	0x0	CH3 Buck is assigned to slot 1	0x3	
		_	0x1	CH3 Buck is assigned to slot 2		
			0x2	CH3 Buck is assigned to slot 3		
			0x3	CH3 Buck is assigned to slot 4		
		BUCK2_GRP	Assign C sequenc	CH2 Buck to a power-up / power-down ing slot.		
			Value	Description		
[3:2]	RW		0x0	CH2 Buck is assigned to slot 1	0x2	
			0x1	CH2 Buck is assigned to slot 2		
			0x2	CH2 Buck is assigned to slot 3		
			0x3	CH2 Buck is assigned to slot 4		
			Assign C sequenc	CH1 Buck to a power-up / power-down ing slot.		
			Value	Description		
[1:0]	RW	BUCK1_GRP	0x0	CH1 Buck is assigned to slot 1	0x1	
		_	0x1	CH1 Buck is assigned to slot 2		
			0x2	CH1 Buck is assigned to slot 3		
			0x3	CH1 Buck is assigned to slot 4		

Table 30: PMC_LDO_SEQ_GRP (0x000D)

Bit	Туре	Field Name	Description		Reset
			Assign LDO to a power-up / power-down sequencing slot.		
			Value	Description	
[1:0]	RW	V LDO_GRP	0x0	LDO is assigned to slot 1	0x0
, ,			0x1	LDO is assigned to slot 2	
			0x2	LDO is assigned to slot 3	
			0x3	LDO is assigned to slot 4	

Table 31: PMC_PG1 (0x000E)

Bit	Туре	Field Name	Description		Reset
		Assign C	Assign CH4 Buck to PG1 monitor group.		
	514	BUCK4_PG1	Value	Description	
[4]	[4] RW BU		0x0	CH4 Buck is not assigned to PG1 group	0x0
		0x1	CH4 Buck is assigned to PG1 group		

Bit	Туре	Field Name	Descript	tion	Reset	
			Assign C	Assign CH3 Buck to PG1 monitor group.		
[0]	DW	DUCKS DO4	Value	Description	0.40	
[3]	RW	BUCK3_PG1	0x0	CH3 Buck is not assigned to PG1 group	0x0	
			0x1	CH3 Buck is assigned to PG1 group		
			Assign C	CH2 Buck to PG1 monitor group.		
[0]	RW	BUCKS DC4	Value	Description	0v4	
[2]	KVV	RW BUCK2_PG1	0x0	CH2 Buck is not assigned to PG1 group	0x1	
			0x1	CH2 Buck is assigned to PG1 group		
		BUCK1_PG1	Assign CH1 Buck to PG1 monitor group.			
[4]	DW		Value	Description	0x0	
[1]	RW		0x0	CH1 Buck is not assigned to PG1 group		
			0x1	CH1 Buck is assigned to PG1 group		
			Assign L	DO to PG1 monitor group.		
101	DW	LDO_PG1	Value	Description	0x0	
[0]	RW		0x0	LDO is not assigned to PG1 group		
			0x1	LDO is assigned to PG1 group		

Table 32: PMC_PG2 (0x000F)

Bit	Туре	Field Name	Descrip	tion	Reset	
			Assign C	Assign CH4 Buck to PG2 monitor group.		
F 41	DW	DUOKA DOO	Value	Description	04	
[4]	RW	BUCK4_PG2	0x0	CH4 Buck is not assigned to PG2 group	0x1	
			0x1	CH4 Buck is assigned to PG2 group		
			Assign C	CH3 Buck to PG2 monitor group.		
[0]		DUCKS DOS	Value	Description	0.4	
[3]	RW	BUCK3_PG2	0x0	CH3 Buck is not assigned to PG2 group	0x1	
			0x1	CH3 Buck is assigned to PG2 group		
			Assign CH2 Buck to PG2 monitor group.			
[0]	DW		Value	Description	0x0	
[2]	RW	BUCK2_PG2	0x0	CH2 Buck is not assigned to PG2 group		
			0x1	CH2 Buck is assigned to PG2 group		
			Assign C	CH1 Buck to PG2 monitor group.		
[4]	DW	BUCK1_PG2	Value	Description	0x1	
[1]	RW		0x0	CH1 Buck is not assigned to PG2 group		
			0x1	CH1 Buck is assigned to PG2 group		

Bit	Туре	Field Name	Description		Reset
FO		Assign LDO to PG2 monitor group.			
		Value	Description	00	
[U]	[0] RW LDO_PG	LDO_PG2	0x0	LDO is not assigned to PG2 group	0x0
			0x1	LDO is assigned to PG2 group	

Table 33: PMC_DISCHARGE (0x0010)

Bit	Туре	Field Name	Descript	ion	Reset	
[4]	RW	BUCK4_DISCHARGE	resistor to When dis output ca enabled t	CH4 Buck discharge resistor control. Connects resistor to ground when channel is shut down. When disabled, excessive charge may be left on output capacitors (NOT recommended). When enabled the resister will be connected after the buck output voltage has completed ramping down to 0 V.		
			Value	Description		
			0x0	Disabled - NOT recommended		
			0x1	Enabled		
[3]	[3] RW BUCK3_DISCHARGE		resistor to When dis output ca When en	k discharge resistor control. Connects o ground when channel is shut down. sabled, excessive charge may be left on pacitors (NOT recommended). abled the resister will be connected after output voltage has completed ramping 0 V.	0x1	
			Value	Description		
			0x0	Disabled - NOT recommended		
			0x1	Enabled		
[2]	RW	BUCK2_DISCHARGE	resistor to When dis output ca enabled t	k discharge resistor control. Connects o ground when channel is shut down. sabled, excessive charge may be left on pacitors (NOT recommended). When the resister will be connected after the out voltage has completed ramping down	0x1	
			Value	Description		
			0x0	Disabled - NOT recommended		
			0x1	Enabled		
[1]	RW	BUCK1_DISCHARGE	resistor to When dis output ca enabled t	k discharge resistor control. Connects o ground when channel is shut down. sabled, excessive charge may be left on pacitors (NOT recommended). When the resister will be connected after the but voltage has completed ramping down	0x1	
			Value	Description		
			0x0	Disabled - NOT recommended		
			0x1	Enabled		

Bit	Туре	Field Name	Description		Reset
		LDO_DISCHARGE	LDO discharge resistor control. Connects resistor to ground when channel is shut down. When disabled, excessive charge may be left on output capacitors (NOT recommended).		
[0]	RW		Value	Description	0x1
			0x0	Disabled - NOT recommended	
			0x1	Enabled	

Table 34: PMC_TEMP (0x0011)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	TEMP	Indicates ADC TEMP value. Temperature, T (°C) = -1.97*CODE + 349	0x0

Table 35: PMC_ADC0 (0x0012)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	ADC0	Indicates AN0 ADC value. VAN0 = 20 mV * CODE	0x0

Table 36: PMC_ADC1 (0x0013)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	ADC1	Indicates AN1 ADC value. VAN1 = 20 mV * CODE	0x0

Table 37: PMC_REVISION_ID (0x0014)

Bit	Туре	Field Name	Description	Reset
[7:0]	RW	REVISION_ID	Scratch register for user.	0xE9

13.2.2 Chip ID

Table 38: OTP_CONFIG_ID (0x0062)

Bit	Туре	Field Name	Description	Reset
[7:0]	R	CONFIG_REV	OTP variant code.	0x0

14 Package Information

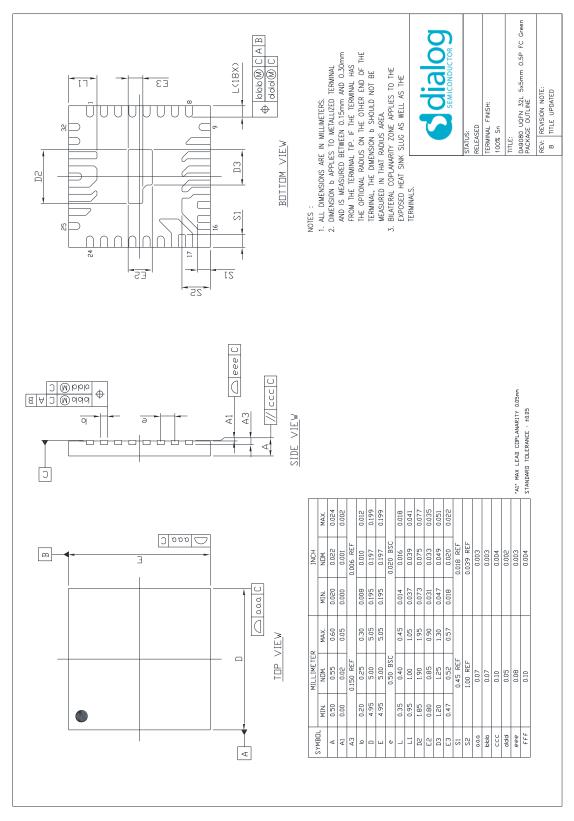
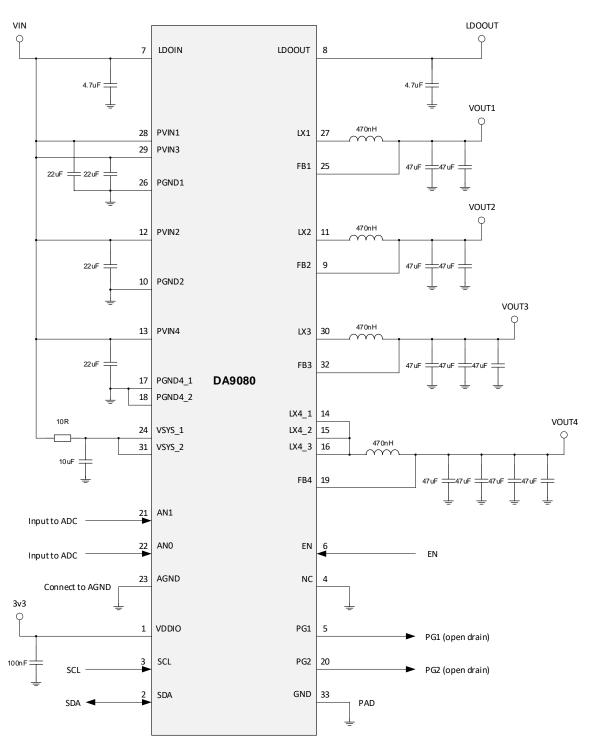


Figure 16: UQFN Package Outline Diagram

15 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please consult your Dialog Semiconductor local sales representative.

Table 39: Ordering Information


Part Number	Package	Size (mm)	Shipment Form	Pack Quantity
DA9080-xxFC2	UQFN	5.0 mm x 5.0 mm by 0.5 mm pitch	Tape and Reel	4900

Part Number Legend:

xx: OTP number

16 Application Information

Figure 17: Application Diagram

16.1 Recommended External Components

Table 40: Recommended External Components

Value	Size	Supplier	Part Number
4.7 μF	1005 (0402 EIA)	TDK	C1005JB1A475K050BC
10 μF	1005 (0402 EIA)	AVX	0402ZD106MAT2A
22 μF	1608 (0603 EIA)	Murata	GRM188R61J226ME15D
47 μF	1608 (0603 EIA)	Murata	GRM188R60J476ME15D
470 nH	2520	Cyntec	HMLQ25201T-R47MSR
10 Ω	1005 (0402 EIA)	Yageo	RC0402FR-0710RL

16.2 Capacitor Derating

Ceramic capacitors are known to lose their capacitance rapidly depending on different factors. The output capacitance of each buck is reduced by static tolerance, voltage, temperature, and aging, see Table 41. These derating factors needs to take into consideration when the bucks are evaluated.

Table 41: Capacitor Derating Values

Block	Derating	Description	Lower Limit	Upper Limit
	Static tolerance	+/-20 %	0.8	1.2
D 14	Voltage derating	-40 % for 2.1 V -65 % for 3.3 V	0.35	0.6
Buck 1	Temperature derating	0 / -10 %	0.9	1
	Aging	0/ -10 %	0.9	1
	Total derating		0.2268	0.72
	Static Tolerance	+/-20 %	0.8	1.2
	Voltage Derating	-25 % for 2.1 V -50 % for 2.6 V	0.5	0.75
Buck2	Temperature derating	0 / -10 %	0.9	1
	Aging	0/ -10 %	0.9	1
	Total derating		0.324	0.9
	Static Tolerance	+/-20 %	0.8	1.2
	Voltage Derating	-10 % for 0.8 V -23 % for 1.4 V	0.77	0.9
Buck3/4	Temperature derating	0 / -10 %	0.9	1
	Aging	0/ -10 %	0.9	1
	Total derating		0.49896	1.08

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2021 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email

enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222

Web site:

www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200 China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058