

Application Note DA16200 Antenna Switching Diversity

AN-WI-008

Abstract

This document provides information about Antenna Switching Diversity function in DA16200.

AN-WI-008

DA16200 Antenna Switching Diversity

Contents

Ab	stract	1
1	Introduction	3
2	Registers	3
Re	vision History	5

Figures

Figure 1. Antenna Switch Internal Block Diagram

1 Introduction

The DA16200 provides an antenna switching diversity function to improve antenna performance in a multi-path environment. The PHY HW block measures the Received Signal Strength Indicator (RSSI) of each antenna and selects the antenna with the largest RSSI. The selected antenna is also used for transmission. To use the Antenna Switching Diversity function, an external switch element is required. Switch control is done through a GPIO. Two GPIOs can be used for switch control. For this purpose, select any of unused pins among the GPIO pins. The control signal can be changed with a register setting to suit the external switching device.

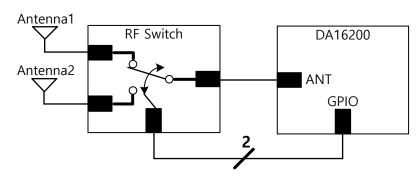


Figure 1. Antenna Switch Internal Block Diagram

2 Registers

Antenna Switching Diversity uses the registers mentioned in the tables below.

GPIO Alternate Functions (0x4001003C)

Bit	Mode	Symbol	Description	Reset
12:0	R/W	FUNC_OUT_EN	Alternate Function output enable [12]: UART2_TXDOE enable [11]: UART1_TXDOE enable [10]: UART0_TXDOE enable [9]: RF_SW2 enable [8]: RF_SW1 enable [7]: mSPI_CSB[3] enable (1=enable) [6]: mSPI_CSB[3] enable [5]: mSPI_CSB[1] enable [4]: Ext_Intr enable [3]: PWM_OUT[3] enable (1=enable) [2]: PWM_OUT[3] enable [1]: PWM_OUT[1] enable [0]: PWM_OUT[0] enable	0x0000

This register serves to designate a GPIO port as one of alternate functions. Bit[9:8] should be set to '1' for RF switching signals used for the Antenna Switching Diversity function.

RF Switch Output Select (0x40010FC8)

Bit	Mode	Symbol	Description	Reset
15:0	R/W	RF_SW_OUTSEL	RF_SW[1:0] port selection [7: 4] : port sel of the RF_SW2 [3: 0] : port sel of the RF_SW1	0x0000

This register serves to select which GPIO ports to use for the RF switch control signals that the PHY HW generates after the RSSI of each antenna is measured.

When GPIOA[11] needs to be used for RF_SW2 while GPIOA[10] is used for RF SW1, 0xBA should be set, in which 'B' is for GPIOA[11] and 'A' for GPIOA[10].

A	testes	Mate
Appi	ication	Note

Revision 1.0

Bit	Mode	Symbol	Description	Reset
19:18	R/W	AN_SW_Value2for_DIV	RF switch signals values when ANT2 selected	2'b01
17:16	R/W	AN_SW_Value1for_DIV	RF switch signals values when ANT1 selected	2'b10

RF_Interface_Control (0x60C0C000)

This register serves to set the values for the RF switching signals RF_SW1 and RF_SW2.

Antenna Switching Enable (0x60C036F0)

Bit	Mode	Symbol	Description	Reset
4	R/W	ANT_DIV_MODE_EN	1 for enable.	1'b0

This register enables the automatic Antenna Switching operation, when set.

The PHY HW will measure the RSSI from both antennas and select the one with the strongest RSSI generating RF switching control signals of RF_SW1 and RF_SW2 automatically.

If software control is preferred over automatic antenna switching control, this register should not be enabled, which will disable the automatic antenna switching operation of the PHY HW.

For manual control, the following registers are used for RF switch control.

Antenna Select (0x60C0F0A4)

Bit	Mode	Symbol	Description	Reset
4	R	AS_STATUS	Selected Antenna Number 0 : Antenna 1 1 : Antenna 2	1'b0
0	R/W	AS_VALUE	Antenna Number to select 0 : Antenna 1 1 : Antenna 2	1'b0

Antenna Select Set (0x60C0F0A0)

Bit	Mode	Symbol	Description	Reset
0	R/W	AS_FORCE_WRITE	When set, the antenna with AS_VALUE will be selected. This bit will be cleared automatically after set.	1'b0

When this register is set to value '1', the antenna with AS_VALUE in Antenna Select register will be selected and RF switch control signals RF_SW1 and RF_SW2 with the values set in the RF_Interface_Control register will output accordingly.

Revision History

Revision	Date	Description
1.0	14 May 2020	Initial version.

Application Note

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor product (or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor Plc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2021 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822 Email: enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100 Taiwan Dialog Semiconductor Taiwan

Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

Application Note

Revision 1.0