

Application Note DA16200 Pin Multiplexing AN-WI-010

Abstract

This document provides information about the pin multiplexing in DA16200.

Contents

Ab	stract	.1
1	Introduction	. 3
2	PIN MUX Details	. 5
3	Register Maps	. 9
Re	vision History	10

Figures

Figure 1: DA16200 Pin Multiplexing	. 4
Figure 2: Pin Mux for the GPIOA Group	. 6
Figure 3: PIN MUX for the GPIOB and GPIOC Groups	. 8

Tables

Table 1: Register Maps for Pin Multiplexing	9
Table 2: FSEL_GPIO1 (0x5000_1208, Reset: 0x3F61_1389)	9
Table 3: FSEL_GPIO2 (0x5000_120C, Reset: 0x002E_AA00)	9

1 Introduction

DA16200 provides various interfaces to support many kinds of applications. It is possible to control each pin according to the required application in reference to the pin multiplexing illustrated in Figure 1. Pin control can be realized through register setting. This device can use a maximum of 16 GPIO pins (GPIOA[11:0], GPIOC[8:6], and GPIOA[15]) and each of the GPIO pins have various functions like I2C, SPI, etc. To determine which function should be selected in each GPIO pins, use the pin multiplexing. The four pins from GPIOA0 to GPIOA3 support analog input for ADC function in addition to digital signals, which also can be realized through register setting.

Figure 1 shows the functions available for each GPIOs. For example, if you want the I2C master function in DA16200, you can check which GPIOs support the I2C master function in this figure. You can see GPIOA[1:0], GPIOA[5:4], and GPIOA[9:8] support I2C master function.

DA16200 Pin Multiplexing

Pin	JTAG	Analog	SPI master	SPI slave	I2C master	I2C slave	SDIO slave	SDeMMC	BT coex	125	I2S_Clock	UART1	UART2	Muxed w/Analog	Pin State (nRESET=0)	Driving Strength (Default : 8mA)
GPIOA0		CH0		SPI_MISO	I2C_SDA	I2C_SDA				BCLK		TXD		Yes	I-PD	2/4/8/12mA
GPIOA1		CH1		SPI_MOSI	I2C_CLK	I2C_CLK		WRP		MCLK		RXD		Yes	I-PD	2/4/8/12mA
GPIOA2		CH2		SPI_CSB		I2C_SDA				SDO		TXD		Yes	I-PD	2/4/8/12mA
GPIOA3		CH3		SPI_CLK		I2C_CLK				LRCK	CLK_IN	RXD		Yes	I-PD	2/4/8/12mA
GPIOA4					I2C_SDA	I2C_SDA	CMD	CMD		BCLK		TXD/RTS		No	I-PD	2/4/8/12mA
GPIOA5					I2C_CLK	I2C_CLK	CLK	CLK		MCLK		RXD/CTS		No	I-PD	2/4/8/12mA
GPIOA6			SPI_CSB	SPI_CSB		I2C_SDA	D3	D3		SDO		TXD		No	I-PD	2/4/8/12mA
GPIOA7			SPI_CLK	SPI_CLK		I2C_CLK	D2	D2		LRCK		RXD		No	I-PD	2/4/8/12mA
GPIOA8			SPI_DIO0	SPI_MISO	I2C_SDA		D1	D1	BT_SIG0	BCLK				No	I-PD	2/4/8/12mA
GPIOA9			SPI_DIO1	SPI_MOSI	I2C_CLK		D0	DO	BT_SIG1	MCLK				No	I-PD	2/4/8/12mA
GPIOA10			SPI_DIO2	SPI_MISO				WRP	BT_SIG2		CLK_IN		TXD	No	I-PD	2/4/8/12mA
GPIOA11			SPI_DIO3	SPI_MOSI									RXD	No	I-PD	2/4/8/12mA
TCLK/GPIOA15	TCLK													No	I-PD	2/4/8/12mA
TMS	TMS													No	I-PU	2/4/8/12mA
UART_TXD														No	0	2/4/8/12mA
UART_RXD														No	I	2/4/8/12mA
GPIOC8	TDI													No	I-PD	2/4/8/12mA
GPIOC7	TDO												RXD	No	I-PD	2/4/8/12mA
GPIOC6	NTRST												TXD	No	I-PD	2/4/8/12mA

Figure 1: DA16200 Pin Multiplexing

2 **PIN MUX Details**

Figure 2 and Figure 3 show the PIN MUX layout. The color-coding information for the figures is the following:

- Black => input
- Red => output
- Violet => in/out

Figure 2 shows the functions available for the GPIOA group. The GPIOA[11:0] pin is available for pin multiplexing in the GPIOA group. (TCLK, pin#7, can also be used as a GPIOA[15])

For example, if you want to use the I2C master function in DA16200, you need a I2c clock and data signals. As described before, Figure 1 shows possible candidates for the I2C master function (GPIOA[1:0], GPIOA[5:4], and GPIOA[9:8]) and you can select one of them for your application.

Let's assume you select GPIOA[5:4] as a I2C master function. GPIOA[4] and GPIOA[5] are located in the third row from the bottom in Figure 2 and there is a I2C master at the same row. This means that GPIOA[4] and GPIOA[5] are defined as the I2C master signals. In this case, I2C_SDA and I2C_CLK respectively. Check the value for the I2C master; for our example it is '5'. This value should be set to the register FSEL_GPIO1[11:8]. See Section 3 for information on the register map.

Note that, both GPIOA[4] and GPIOA[5] are configured as the I2C signals with one single register value of '5'. Two pins are defined by one single register value.

The _fc9k_io_pinmux (UINT32 mux, UINT32 config) API in the SDK is for this pin mux configuration. After this API is called, check if the corresponding register is set to the value defined in Figure 2.

The "mux" parameter in the API is defined in <da16200_ioconfig.h> as below:

#define	PIN AMUX	0
#define	PIN BMUX	1
#define	PIN CMUX	2
#define	PIN DMUX	3
#define	PIN EMUX	4
#define	PIN FMUX	5
#define	PIN IMUX	6
#define	PIN JMUX	7
#define	PIN_KMUX	8
#define	PIN HMUX	9
#define	PIN LMUX	10
#define	PIN MMUX	11
#define	PIN_NMUX	12
#define	PIN_PMUX	13
#define	PIN_QMUX	14
#define	PIN RMUX	15
#define	PIN SMUX	16
#define	PIN_TMUX	17
#define	PIN_UMUX	18
#define	PIN ALLMUX	19

AMUX is in the bottom row of Figure 2 and includes GPIOA[0] and GPIOA[1].

BMUX is in the second row from the bottom in Figure 2 and includes GPIOA[2] and GPIOA[3].

CMUX is in the third row from the bottom in Figure 2 and includes GPIOA[4] and GPIOA[5]. And so on.

Therefore, for our example, the I2C master function at GPIO[5:4] is at CMUX and you should use PIN_CMUX for GPIO[5:4].

	_	_		
Δn	nlic	atic	n N	loto
AP	μιιυ	auc	711 F	

DA16200 Pin Multiplexing

value bit sel	0	1	2	3	4	5	6	7	8	9	10
FSEL_GPIO[31:30]	Semi-fixed pin : JTAG_01 TMS TCLK	D_SYS D_SYS_OUT[0] D_SYS_OUT[1]	GPIO(2) x GPIOA[15]	GPIO(2) x GPIOA[15]		10 					
FSEL_GPIO[29:28] FSEL_GPIO[27:26] FSEL_GPIO[25:24]	UART2_01 I25_CLK_In UART2_RXD UART2_TXD	BT(0:2) BT_sig2 (iBTPri) BT_sig1 (iBtAct) BT_sig0 (oWlanAct)	D_SYS D_SYS_CLK D_SYS_OUT[3] D_SYS_OUT[2]	GPIO(2) GPIOA[14] GPIOA[13] GPIOA[12]		6.6					
FSEL_GPI0[22:20]	G(1) + BT GPIOA[11] BT_sig2 (iBTPri)	G(1) + 125 GPIOA[11] 125_CLK_In	G[1] + eMMC[6) GPIOA[11] mSDeMMC_WRP	sSPI (2:3) sSPI_MOSI sSPI_MISO	UART2 (0:1) UART2_RXD UART2_TXD	mSPI (4:5) E_SPI_IO3 E_SPI_IO2	GPIO(2) GPIOA[11] GPIOA[10]	GPIO(2) GPIOA[11] GPIOA[10]			
FSEL_GPIO[19:16]	5G control(45) 5GC_Sig[5] 5GC_Sig[4]	sSPI (2:3) sSPI_MOSI sSPI_MISO	eMMC (0:1) mSDeMMC_D0 mSDeMMC_D1	sSDIO (0:1) sSDIO_D0 sSDIO_D1	I2C_master mI2C_CLK mI2C_SDA	BT (0:1) BT_sig1 (iBtAct) BT_sig0 (oWlanAct)	mSPI (2:3) E_SPI_IO1 E_SPI_IO0	125(0:1) 125_MCLK 125_BCLK	GPIO(2) GPIOA[9] GPIOA[8]	GPIO(2) GPIOA[9] GPIOA[8]	
FSEL_GPIO[15:12]	\geq	SSPI (0:1) SSPI_CLK SSPI_CSB	eMMC (2:3) mSDeMMCIO_D2 mSDeMMCIO_D3	sSDIO (2:3) sSDIO_D2 sSDIO_D3	UART1 (0:1) UART1_RXD UART1_TXD	I2C slave sI2C_CLK sI2C_SDA	mSPI (0:1) E_SPI_CLK E_SPI_CSB	125(2:3) 125_LRCK 125_SDO	GPIO(2) GPIOA[7] GPIOA[6]	GPIO(2) GPIOA[7] GPIOA[6]	
FSEL_GPIO[11:8]	5G control(01) 5GC_Sig[3] 5GC_Sig[2]	I2C slave sI2C_CLK sI2C_SDA	eMMC (4:5) mSDeMMC_CLK mSDeMMC_CMD	sSDIO (4:5) sSDIO_CLK sSDIO_CMD	UART1 (2:3) UART1_CTS UART1_RTS	I2C master mI2C_CLK mI2C_SDA	UART1 (0:1) UART1_RXD UART1_TXD	125(0:1) 125_MCLK 125_BCLK	GPIO(2) GPIOA[5] GPIOA[4]	GPIO(2) GPIOA[5] GPIOA[4]	
FSEL_GPIO[7: 4]	AD12 (2) X (Analog In) X (Analog In)	sSPI (0:1) sSPI_CLK sSPI_CSB	125 (2:3) 125_LRCK 125_SDO	I2C slave sI2C_CLK sI2C_SDA	UART1 (0:1) UART1_RXD UART1_TXD	\geq	AD12(1) + GPIO(1) GPIO[3] X (Analog In)	AD12(1) + I25_CLK I25_CLK_In X (Analog In)	GPIO(2) GPIOA[3] GPIOA[2]	GPIO(2) GPIOA[3] GPIOA[2]	
FSEL_GPIO[3:0]	AD12 (2) X (Analog In) X (Analog In)	sSPI (2:3) sSPI_MOSI sSPI_MISO	125 (0:1) 125_MCLK 125_BCLK	I2C slave sI2C_CLK sI2C_SDA	UART1 (0:1) UART1_RXD UART1_TXD	I2C master mI2C_CLK mI2C_SDA	5G control(01) 5GC_Sig[1] 5GC_Sig[0]	AD12(1) + GPIO(1) GPIO[1] X (Analog In)	AD12(1) + WRP mSDeMMC_WRP X (Analog in)	GPIO(2) GPIOA[1] GPIOA[0]	GPIO(2) GPIO[1] GPIO[0]

Figure 2: Pin Mux for the GPIOA Group

-			
Λn	nli	ication	Noto
Πμ			NULE

DA16200 Pin Multiplexing

After that, you can select a function to be used with "config" parameter in the API. The <DA16200_ioconfig.h> file defines the possible "config" parameter values.

For our example, when the I2C master is CMUX, the CMUX values defined in the file are the following:

// CMUX			
#define	CMUX_5GC		0 /* 5G control[3:2] */
#define	CMUX I2Cs		1 /* I2C slave */
#define	CMUX SDm		2 /* mSDeMMC CLK, mSDeMMC CMD */
#define	CMUX SDs		3 /* sSDIO CLK, sSDIO CMD */
#define	CMUX_UART1c	4	/* UART1 (CTS, RTS) */
#define	CMUX_I2Cm		5 /* I2C master(SDA,CLK) */
#define	CMUX UART1d	6	/* UART1 (RXD, TXD) */
#define	CMUX I2S		7 /* I2S (MCLK, BCLK) */
#define	CMUX_GPIO		8 /* GPIOA[5:4] */
#define	CMUX_GPIOALT		9 /* GPIOA[5:4] */

For the I2C master, CMUX_I2Cm should be used and its value is 5.

NOTE

In the pin name, 'm' at I2Cm means master, while 's' at I2Cs means slave.

In the same way, GPIOC[8:6] can be configured according to Figure 3 or the device API, _fc9k_io_pinmux(UINT32 mux, UINT32 config) with the "mux" value of PIN_UMUX.

NOTE		
Only the GPIOC[8:6] pin is available	in the GPIC	OC group in a 6x6 package.
// UMUX		
#define UMUX JTAG	0	/* TDI,TDO,nTRST */
#define UMUX UART2GPIO	1	<pre>/* UART2(TXD,RXD),GPIOC[8] */</pre>
#define UMUX GPIO	2	/* GPIOC[8:6] */

For example, if you want to use UART2 in DA16200, and GPIOC[7:6] are selected for it, then you can call the device API as below:

fc9k io pinmux(PIN UMUX, UMUX UART2GPIO);

NOTE
For the UMUX case, three pins (GPIOC[8:6]) are defined by one single register value of '1' as shown in

Figure 3.

DA16200 Pin Multiplexing

value bit sel	0	1	2	3	4	5
FSEL_GPIO2[21:20]	JTAG(2:3) TDI TDO nTRST	G[1] + UART2 (0:1) GPIO[8] UART2_RXD UART2_TXD	GPIO(2) GPIOC[8] GPIOC[7] GPIOC[6]			
FSEL_GPIO2[19:18]	G(1) + 125 125_CLK_In GPIO[4]	UART2 (2:3) UART2_CTS UART2_RT5	GPIO(2) E_SPI_IO3 E_SPI_IO2	GPIO(2) GPIOC[5] GPIOC[4]		
FSEL_GPI02[17:16]	UART1 (2:3) UART1_CTS UART1_RTS	5G control(45) 5GC_Sig[1] 5GC_Sig[0]	GPIO(2) GPIOC[3] GPIOC[2]			
FSEL_GPIO2[15:14]	UART1 (0:1) UART1_RXD UART1 TXD	I2C master mI2C_CLK mI2C_SDA	GPIO(2) GPIOC[1] GPIOC[0]			
FSEL_GPIO2[13:12]	125(0:3) 125_LRCK 125_SDO 125_MCLK 125_BCLK	QSPI (4:7) H_SPI_DIO7 H_SPI_DIO6 H_SPI_DIO5 H_SPI_DIO4	GPIOB[4] GPIOB[11] GPIOB[10] GPIOB[9] GPIOB[8]			
FSEL_GPIO2[11:10]	mSPI (0:3) E_SPI_IO1 (mSPI_MISO) E_SPI_IO0 (mSPI_MOSI) E_SPI_CSB[0] E_SPI_CLK	5G control(0:3) 5GC_Sig[5] 5GC_Sig[4] 5GC_Sig[3] 5GC_Sig[2]	GPIOB[4] GPIOB[7] GPIOB[6] GPIOB[5] GPIOB[4]	GPIOB(4) GPIOB[7] GPIOB[6] GPIOB[5] GPIOB[4]		
FSEL_GPIO2[9:8]	SSPI(0:3) SSPI_CLK SSPI_CSB SSPI_MOSI SSPI_MISO	X	GPIOB(4) GPIOB[3] GPIOB[2] GPIOB[1] GPIOB[0]	GPIOB(4) GPIOB[3] GPIOB[2] GPIOB[1] GPIOB[0]		
FSEL_GPIO2[6:4]	QSPI (4:5) F_103 (F_HOLD) F_102 (F_WP)	UART2 (0:1) UART2_TXD UART2_RXD		sSDIO(4:5) sSDIO_D3 sSDIO_D2	GPIO(2) GPIOC[14] GPIOC[13]	GPIO(2) GPIOC[14] GPIOC[13]
FSEL_GPIO2[3:0]	QSPI (3:0) F_IO1 (F_SI) F_IO0 (F_SO) F_CLK F_CSB[1]	SSPI (3:0) SSPI_MISO SSPI_MOSI SSPI_CLK SSPI_CSB	125(0:3) 125_SDO 125_LRCK 125_MCLK 125_BCLK	sSDIO(0:3) sSDIO_D1 sSDIO_D0 sSDIO_CLK sSDIO_CMD	GPIO(4) GPIOC[12] GPIOC[11] GPIOC[10] GPIOC[9]	GPIO(4) GPIOC[12] GPIOC[11] GPIOC[10] GPIOC[9]

Figure 3: PIN MUX for the GPIOB and GPIOC Groups

Application Note

Revision 1.1

3 Register Maps

Table 1: Register Maps for Pin Multiplexing

Address Registers		Description	
Common control for GPIO Pin Status			
0x5000_1208	FSEL_GPIO1	Function Selection of the GPIOA [14:0]	
0x5000_120C	FSEL_GPIO2	Function Selection of the GPIOB[11:0] and GPIOC[8:0]	

Table 2: FSEL_GPIO1 (0x5000_1208, Reset: 0x3F61_1389)

Bit	Mode	Symbol	Description	Reset
31:30	R/W	-	Pin function selection for GPIOA[15]	b 00
29:28			Pin function selection for GPIOA[14]	b 11
27:26			Pin function selection for GPIOA[13]	b 11
25:24			Pin function selection for GPIOA[12]	b 11
22:20			Pin function selection for GPIOA[11:10]	b 110
19:16			Pin function selection for GPIOA[9:8]	b 0001
15:12			Pin function selection for GPIOA[7:6]	b 0001
11:8			Pin function selection for GPIOA[5:4]	b 0011
7:4			Pin function selection for GPIOA[3:2]	b 1000
3:0			Pin function selection for GPIOA[1:0]	b 1001
			See Figure 2	

Table 3: FSEL_GPIO2 (0x5000_120C, Reset: 0x002E_AA00)

Bit	Mode	Symbol	Description	Reset
21:20	R/W	-	Pin function selection for GPIOC[8:6]	b 01
19:18			Pin function selection for GPIOC[5:4]	b 11
17:16			Pin function selection for GPIOC[3:2]	b 10
15:14			Pin function selection for GPIOC[1:0]	b 11
13:12			Pin function selection for GPIOB[11:8]	b 00
11:10			Pin function selection for GPIOB[7:4]	b 11
9:8			Pin function selection for GPIOB[3:0]	b 00
6:4			Pin function selection for GPIOC[14:13]	b 000
3:0			Pin function selection for GPIOC[12:9]	b 0000
			See Figure 2	

Revision History

Revision	Date	Description
1.1	01-Dec-2020	Changed Figure 1 Register Maps for Pin Mutiplexing.
1.0	30-Oct-2020	Initial version.

Application Note

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Disclaimer

Unless otherwise agreed in writing, the Dialog Semiconductor products (and any associated software) referred to in this document are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Dialog Semiconductor product (or associated software) can reasonably be expected to result in personal injury, death or severe property or environmental damage. Dialog Semiconductor and its suppliers accept no liability for inclusion and/or use of Dialog Semiconductor products (and any associated software) in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, express or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications. Notwithstanding the foregoing, for any automotive grade version of the device, Dialog Semiconductor reserves the right to change the information published in this document, including, without limitation, the specification and the design of the related semiconductor products, software and applications, in accordance with its standard automotive change notification process.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor

All use of Dialog Semiconductor products, software and applications referred to in this document is subject to Dialog Semiconductor's Standard litions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated

Dialog, Dialog Semiconductor and the Dialog logo are trademarks of Dialog Semiconductor PIc or its subsidiaries. All other product or service names and marks are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822 Email enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japar

Dialog Semiconductor K. K. Phone: +81 3 5769 5100 Taiwar Dialog Semiconductor Taiwan

Phone: +886 281 786 222 Web site: www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Dialog Semiconductor Korea Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

Application Note

CFR0014

Revision 1.1

11 of 11

01-Dec-2020